Стандарт IEEE 802.11b


Между кабельными сетями Ethernet и беспроводными сетями Radio Ethernet есть много общего, но много и различий. Это и понятно — разные среды передачи данных требуют принципиально различного подхода к способам передачи и кодирования данных, то есть к непосредственной подготовке данных для передачи. Поэтому основные различия между кабельными и беспроводными сетями сконцентрированы на так называемом физическом подуровне (Physical Layer, PHY) и подуровне доступа к среде передачи данных (Medium Access Control, MAC). В соответствии с эталонной моделью сетевых взаимодействий OSI (Open System Interconnection), именно на этих подуровнях данные формируются и кодируются нужным образом для дальнейшей передачи по сети.

Теоретические аспекты функционирования сетей Radio Ethernet регламентированы стандартами IEEE 802.11 и IEEE 802.11b. Именно в этих стандартах определяется порядок организации беспроводных сетей на уровне доступа к среде передачи данных (MAC-уровень) и на физическом уровне (PHY-уровень).

Изначально стандарт IEEE 802.11 предполагал возможность передачи данных по радиоканалу на скорости 1 Мбит/с и опционально на скорости 2 Мбит/с. В более поздней версии — IEEE 802.11b, фактически являющейся дополнением к основному стандарту, определяется скорость передачи 1, 2, 5,5 и 11 Мбит/с.

Физический уровень

Начнем с рассмотрения физического уровня. Стандартом IEEE 802.11b предусмотрено использование частотного диапазона от 2,4 до 2,4835 ГГц, который предназначен для безлицензионного использования в промышленности, науке и медицине. Разрешение выдается изготовителю и передается заказчику после приобретения продукта в виде сертификата. Здесь следует заметить, что в России использование этого частотного диапазона, кроме сертификатов, требует получения разрешения от Государственного комитета по радиочастотам (ГКРЧ) и Главгоссвязьнадзора РФ.

На физическом уровне стандартом IEEE 802.11 предусмотрено два типа радиоканалов (DSSS и FHSS), которые различаются способом модуляции, но используют одну и ту же технологию расширения спектра.

Технология расширения спектра методом прямой последовательности (DSSS)

Основная идея технологии расширения спектра (Spread Spectrum, SS) заключается в том, чтобы от узкополосного спектра сигнала, возникающего при обычном потенциальном кодировании, перейти к широкополосному спектру. Именно это позволяет значительно повысить помехоустойчивость передаваемых данных. Рассмотрим более детально, как это происходит.

При потенциальном кодировании информационные биты 0 и 1 передаются прямоугольными импульсами напряжений. Из курса математики и физики хорошо известно, что любую функцию и соответственно любой сигнал (ограничения, налагаемые на функцию, мы для простоты опускаем) можно представить в виде дискретного или непрерывного набора гармоник — синусоидальных сигналов с определенным образом подобранными весовыми коэффициентами и частотами. Такое представление называют преобразованием Фурье, а сами частоты гармонических сигналов образуют спектральное разложение функции.

К примеру, при передаче прямоугольного импульса длительностью T спектр сигнала описывается функцией

 , где   — частота спектральной составляющей.

Рис. 4. Спектр прямоугольного импульса длительностью T

Несмотря на бесконечный спектр сигнала, наиболее весомые гармоники, то есть вносящие значительный вклад в результирующий сигнал, сосредоточены в небольшой частотной области, ширина которой обратно пропорциональна длительности импульса. Таким образом, с хорошей степенью точности исходный сигнал можно представить как суперпозицию гармоник в спектральной полосе, ширина которой равна длительности импульса T. Соответственно, чем меньше длительность импульса, тем больший спектральный диапазон занимает такой сигнал. Для того чтобы повысить помехоустойчивость передаваемого сигнала, то есть увеличить вероятность безошибочного распознавания сигнала на приемной стороне в условиях шума, можно воспользоваться методом перехода к широкополосному сигналу, добавляя избыточность в исходный сигнал. Для этого в каждый передаваемый информационный бит «встраивают» определенный код, состоящий из последовательности так называемых чипов

Рис. 5. Изменение спектра сигнала при добавлении шумоподобного кода

Фактически информационный бит, представляемый прямоугольным им­пульсом, разбивается на последовательность более мелких импульсов-чипов. В результате спектр сигнала значительно уширяется, так как ширину спектра можно с хорошей степенью точности считать обратно пропорциональной длительности одного чипа. Такие кодовые последовательности часто называют шумоподобными кодами. Дело в том, что наряду с уширением спектра сигнала уменьшается и спектральная плотность энергии. То есть энергия сигнала как бы «размазывается» по всему спектру. Результирующий сигнал становится шумоподобным в том смысле, что его теперь трудно отличить от естественного шума. Возникает вопрос — для чего усложнять первоначальный сигнал, если в результате он становится неотличимым от шума? Дело в том, что кодовые последовательности чипов обладают уникальным свойством автокорреляции. Попробуем на интуитивном уровне пояснить, в чем смысл корреляции. Под корреляцией в математике понимают степень взаимоподобия двух функций, то есть насколько две различные функции похожи друг на друга. Соответственно под автокорреляцией понимается степень подобия функции самой себе в различные моменты времени. Например, если некоторая функция зависит (меняется) от времени и эта зависимость выражается в виде , то можно рассмотреть функцию в некоторый момент времени и в момент времени . Степень соответствия этих двух функций друг другу в различные моменты времени и называется автокорреляцией. Оказывается, что можно подобрать такую последовательность чипов, для которой функция автокорреляции, отражающая степень подобия функции самой себе через определенный временной интервал, будет иметь резко выраженный пик лишь для одного момента времени. То есть функция будет подобна самой себе только для одного момента времени и совсем не похожа на себя для всех остальных моментов времени. Одна из наиболее известных (но не единственная) таких последовательностей — код Баркера длиной в 11 чипов: 11100010010. Коды Баркера обладают наилучшими среди известных псевдослучайных последовательностей свойствами шумоподобности, что и обусловило их широкое применение. Для передачи единичного и нулевого символов сообщения используются соответственно прямая и инверсная последовательности.

Для упрощенного вычисления автокорреляционной функции последовательности Баркера можно рассчитать разницу между числом совпадений и несовпадений между отдельными чипами последовательности при их циклическом почиповом сдвиге относительно друг друга.

Таблица 1. Вычисление автокорреляционной функции последовательности Баркера

Сдвиг Последовательность Результат корреляции
0 1 1 1 0 0 0 1 0 0 1 0  
1 0 1 1 1 0 0 0 1 0 0 1 -1
2 1 0 1 1 1 0 0 0 1 0 0 -1
3 0 1 0 1 1 1 0 0 0 1 0 -1
4 0 0 1 0 1 1 1 0 0 0 1 -1
5 1 0 0 1 0 1 1 1 0 0 0 -1
6 0 1 0 0 1 0 1 1 1 0 0 -1
7 0 0 1 0 0 1 0 1 1 1 0 -1
8 0 0 0 1 0 0 1 0 1 1 1 -1
9 1 0 0 0 1 0 0 1 0 1 1 -1
10 1 1 0 0 0 1 0 0 1 0 1 -1
11 1 1 1 0 0 0 1 0 0 1 0 11

Как видно из Таблицы 1. последовательность Баркера обладает ярко выраженным автокорреляционным пиком, соответствующим наложению функции самой на себя. Проведя аналогичные расчеты, нетрудно убедиться, что другие последовательности не обладают подобным свойством, то есть имеют несколько пиков корреляции, которые значительно снижают помехоустойчивость передаваемого сигнала.

В приемнике полученный сигнал умножается на код Баркера (вычисляется корреляционная функция сигнала), в результате он становится узкополосным, поэтому его фильтруют в узкой полосе частот, равной удвоенной скорости передачи. Любая помеха, попадающая в полосу исходного широкополосного сигнала, после умножения на код Баркера, наоборот, становится широкополосной, поэтому в узкую информационную полосу попадает лишь часть помехи, по мощности примерно в 11 раз меньшая чем помеха, действующая на входе приемника.

Итак, основной смысл использования кодов Баркера заключается в том, чтобы, имея возможность передавать сигнал практически на уровне помех, гарантировать высокую степень достоверности принимаемой информации.

Как известно, радиоволны приобретают способность переносить информацию в том случае, если они определенным образом модулируются. При этом необходимо, чтобы модуляция синусоидального несущего сигнала соответствовала требуемой последовательности информационных бит. Существует три основных типа модуляции: амплитудная, частотная и фазовая. В стандарте IEEE 802.11 для передачи сигналов используют фазовую модуляцию, поэтому остановимся на ней более подробно.



<< Назад Содержание Вперед >>
Hosted by uCoz