Стандарт IEEE 802.11a


Ортогональность несущих сигналов можно обеспечить в том случае, если за время длительности одного символа несущий сигнал будет совершать целое число колебаний. Примеры нескольких несущих ортогональных колебаний представлены на рис. 22.

Стандарт IEEE 802.11a
Рис. 22.Ортогональные частоты.

Учитывая, что каждый передаваемый символ длительности T передаётся ограниченной по времени синусоидальной функцией, нетрудно найти и спектр такой функции (рис 23), который будет описываться функцией Стандарт IEEE 802.11a, где fi - центральная (несущая) частота i-го канала.

Стандарт IEEE 802.11a
Рис. 23. Символ длительностью T и его спектр.

Такой же функцией описывается и форма частотного подканала. При этом важно, что хотя сами частотные подканалы могут и перекрывать друг друга, однако ортогональность несущих сигналов гарантирует частотную независимость каналов друг от друга, а следовательно, отсутствие межканальной интерференции (рис. 24).

Стандарт IEEE 802.11a
Рис. 24. Частотное разделение каналов с ортогональными несущими сигналами.

Рассмотренный способ деления широкополосного канала на ортогональные частотные подканалы называется ортогональным частотным разделением с мультиплексированием (Orthogonal Frequency Division Multiplexing, OFDM). Для его реализации в передающих устройствах используется обратное быстрое преобразование Фурье (IFFT), переводящее предварительно мультиплексированный на N-каналов сигнал из временного представления в частотное Стандарт IEEE 802.11a (рис. 25).

Стандарт IEEE 802.11a
Рис. 25. Осуществление обратного быстрого преобразования Фурье для получения N ортогональных частотных подканалов

В протоколе 802.11a используется обратное преобразование Фурье с окном в 64 частотных подканала. Поскольку ширина каждого из 12 каналов, определяемых в стандарте 802.11а, имеет ширину 20 МГц, получаем, что каждый ортогональный частотный подканал имеет ширину 20 МГц: 64=312,5 кГц. Однако из 64 ортогональных подканалов используются только 52, причем 48 подканалов используются для передачи данных (Data Tones), а остальные - для передачи служебной информации (Pilot Тones).

Как уже отмечалось, одним из ключевых преимуществ метода OFDM является сочетание высокой скорости передачи с эффективным противостоянием многолучевому распространению. Если говорить точнее, то сама по себе технология OFDM не устраняет многолучевого распространения, но создаёт предпосылки для устранения эффекта межсимвольной интерференции. Дело в том, что неотъемлемой частью технологии OFDM является понятие охранного интервала (Guard Interval, GI) - это циклическое повторение окончания символа, пристраиваемое вначале символа (рис. 26). Охранный интервал является избыточной информацией и в этом смысле снижает полезную (информационную) скорость передачи. Эта избыточная информация добавляется к передаваемому символу в передатчике и отбрасывается при приёме символа в приёмнике, но именно она служит защитой от возникновения межсимвольной интерференции.

Стандарт IEEE 802.11a
Рис. 26. Охранный интервал, пристраиваемый в начало символа.

Наличие охранного интервала создаёт временные паузы между отдельными символами, и если длительность охранного интервала превышает максимальное время задержки сигнала в результате многолучевого распространения, то межсимвольной интерференции не возникает (рис. 27).

Стандарт IEEE 802.11a
Рис. 27. Охранный интервал препятствует возникновению межсимвольной интерференции.

В протоколе 802.1а длительность охранного интервала составляет одну четвёртую длительности самого символа. При этом сам символ имеет длительность 3,2 мкс, а охранный интервал - 0,8 мкс. Таким образом, длительность символа вместе с охранным интервалом составляет 4 мкс.

Говоря о передаче данных в протоколе 802.11a, мы до сих пор не касались вопроса о методе кодирования (модуляции), позволяющем в одном дискретном состоянии сигнала (символе) закодировать несколько информационных битов. Напомним, что в протоколе 802.11b для кодирования использовалась либо двоичная (BDPSK), либо квадратурная (QDPSK) относительная фазовая модуляция. В протоколе 802.11а используются те же методы фазовой модуляции (только не относительные), то есть двоичная и квадратурная фазовые модуляции BPSK и QPSK. При использовании BPSK-модуляции в одном символе кодируется только один информационный бит. Соответственно при использовании QPSK-модуляции, то есть когда фаза сигнала может принимать четыре различных значения, в одном символе кодируется два информационных бита. Модуляция BPSK используется для передачи данных на скоростях 6 и 9 Мбит/с, а модуляция QPSK - на скоростях 12 и 18 Мбит/с.

Для передачи на более высоких скоростях используется квадратурная амплитудная модуляция QAM (Сalled Quadrature Amplitude Modulation). Данный тип модуляции подразумевает, что информация кодируется не только за счёт изменения фазы сигнала, но и за счёт его амплитуды. В протоколе 802.11а используется модуляция 16-QAM и 64-QAM. В первом случае имеется 16 различных состояний сигнала, что позволяет закодировать 4 бита в одном символе. Во втором случае имеется уже 64 возможных состояния сигнала, что позволяет закодировать последовательность 6 битов в одном символе. Модуляция 16-QAM применяется на скоростях 24 и 36 Мбит/с, а модуляция 64-QAM - на скоростях 48 и 54 Мбит/с.

Естественно возникает вопрос: почему при одном и том же типе модуляции возможны различные скорости передачи? Рассмотрим, к примеру, модуляцию BPSK, при которой скорость передачи данных составляет 6 или 9 Мбит/с. Время длительности одного символа вместе с охранным интервалом составляет 4 мкс. Следовательно, частота следования импульсов составит 250 кГц. Учитывая, что в каждом подканале кодируется по одному биту, а всего таких подканалов 48, получим, что общая скорость передачи составит 250 кГц х 48 каналов = 12 МГц. Однако далеко не все биты, кодируемые в символе, являются информационными. Для того чтобы обеспечить достоверность принимаемых данных, то есть иметь возможность обнаруживать и исправлять ошибки, используют избыточную информацию и так называемое свёрточное кодирование. Суть свёрточного кодирования заключается в том, что к последовательности передаваемых битов добавляются служебные биты, значения которых зависят от нескольких предыдущих переданных битов. Использование свёрточного кодирования в сочетании с алгоритмом Витерби позволяет не только обнаруживать, но и в подавляющем большинстве случаев исправлять ошибки передачи на приёмной стороне.

Не вдаваясь в подробности свёрточного кодирования, скажем лишь, что при скорости свёрточного кодирования 1/2, на каждый информационный бит добавляется один служебный (избыточность равна 2). Именно по этой причине при скорости свёрточного кодирования 1/2 информационная скорость вдвое меньше полной скорости. При скорости свёрточного кодирования 3/4 на каждые три информационных бита добавляется один служебный, поэтому в данном случае полезная (информационная) скорость составляет 3/4 от полной скорости.

Из этого следует, что при использовании одного и того же типа модуляции могут получаться разные значения информационной скорости (табл. 10) - всё зависит от скорости свёрточного кодирования. Так, при использовании BPSK-модуляции со скоростью свёрточного кодирования 1/2 получаем информационную скорость 6 Мбит/с, а при использовании свёрточного кодирования со скоростью 3/4 - 9 Мбит/с. Аналогичным образом каждому типу модуляции соответствуют две различные скорости передачи. При этом подчеркнём, что в самом протоколе 802.11а обязательными являются только скорости 6, 12 и 24 Мбит/с, а все остальные - опциональными.

Таблица 10. Различные скорости в протоколе 802.11а.

Скорость данных, Мбит/с Тип модуляции Скорость свёрточного кодирования Количество битов на символ в одном подканале Общее количество битов в OFDM-символе (48 подканалов) Количество битов данных в OFDM-символе
6 BPSK 1/2 1 48 24
9 BPSK 3/4 1 48 36
12 QPSK 1/2 2 96 48
18 QPSK 3/4 2 96 72
24 16-QAM 1/2 4 192 96
36 16-QAM 3/4 4 192 144
48 64-QAM 2/3 6 288 192
54 64-QAM 3/4 6 288 216



<< Назад Содержание Вперед >>
Hosted by uCoz