Эксплуатационные измерения включают в себя:
Дополнительно к эксплуатационным могут быть отнесены измерения спектральных характеристик источника и анализ дисперсии ВОСП, однако они редко проводятся в полевых условиях и на современном уровне развития технологии ближе к системным и лабораторным измерениям.
Для проведения этих измерений используются эксплуатационные приборы, перечисленные в таблице 3.
Таблица 3. Эксплуатационные измерения ВОЛС
Параметр тестирования | Необходимое измерительное оборудование |
---|---|
Оптическая мощность (выход источников, уровень принимаемого сигнала) | ОРМ, OLTS |
Затухание в кабеле, интерфейсах и волокнах | ОРМ, SLS, OLTS |
Уровень возвратных потерь | Анализатор ORL, OTDR |
Определение места и характера повреждения оптоволоконного кабеля | Визуальный дефектоскоп, OTDR |
Определение спектральных характеристик источника* | Оптический анализатор спектра |
Определение параметров дисперсии* | Анализаторы дисперсии |
Стрессовое тестирование ВОСП | Перестраиваемые аттенюаторы, ОРМ, SLS, OLTS |
Измерения уровней оптической мощности и измерения затухания являются взаимосвязанными. Как известно, измерение затухания в любой системе передачи связано с определением уровня сигнала (его мощности) на входе и выходе. Применительно к оптическим системам передачи решение этой простой задачи имеет определенные трудности, поскольку измерение уровня сигнала в ВОСП зависит от параметров оптического интерфейса генератора тестового оптического сигнала (качества обработки торца волокна, точности юстировки излучателя относительно этого торца и др.). Кроме того, существенным является требование постоянства условий согласования источника сигнала с волокном. Все многообразие технических решений по измерению затухания в оптическом кабеле объясняется различными способами решения этих проблем.
Схема такого измерения представлена на рис. &&&&& и представляет собой типичную схему измерения "точка-точка", когда тестовый генератор и анализатор расположены по разным концам тестируемой линии.
Рис. 33. Типовая схема измерения затухания в оптическом кабеле
По определению затухание в линии определяется выражением:
На практике обычно производят измерения не затухания в оптическом кабеле, а вносимое затухание, которое является суммой затухания в линии и потерями мощности в оптических интерфейсах передатчика и приемника. Обычно модификации схемы на рис. 8.15 и технические решения основаны на принципе уменьшения и учета влияния затухания в оптических интерфейсах приборов. При проведении приемосдаточных измерений влияние оптических интерфейсов линейного оборудования ВОСП должно измеряться и учитываться.
Существует две разновидности схемы измерений:
Данный метод в точности соответствует схеме, представленной на рис. 33. Он используется обычно для измерения узлов ВОСП, проведения пошагового тестирования ВОСП в точках, позволяющих подключить источник сигнала и ОРМ. Для повышения точности метода обычно используют статистическое накопление результатов или повторение измерений после разрушения нескольких сантиметров кабеля. Основной ошибкой при проведении измерений без разрушения кабеля является несогласование источника и приемника по спектру передаваемого сигнала.
В описываемом методе могут использоваться не только пара OPM-SLS, но и два прибора OLTS, что обеспечивает дополнительные возможности анализа кабеля с учетом факторов направления. Дело в том, что оптические характеристики кабеля, измеренные от точки А до точки В, могут отличаться от результатов от точки В до А. В этом случае использование OLTS позволяет проводить попеременное тестирование с источником сначала в точке А, а потом - в точке В. Результаты измерений усредняются.
Для измерения затухания кабеля при проведении строительно-монтажных работ иногда используют метод измерения с разрушением кабеля, при котором производят обрыв волокна на расстоянии нескольких метров от входного конца и измеряют разность значений оптической мощности на всей длине кабеля и на коротком участке обрыва. При этом измеренное значение мощности на дальнем конце кабеля считают PL, a измеренное значение после обрыва кабеля - P0. Разность этих двух значений определяет величину затухания в кабеле. Для повышения точности метода измерения повторяют несколько раз путем дополнительных обрывов волокна длиной несколько сантиметров. Недостатком этого метода измерения является то, что он разрушает волокно, поэтому метод не имеет особенной эксплуатационной ценности. Обычно этот метод используется для лабораторного анализа кабелей.
Метод основан на использовании оптических рефлектометров. В основе метода лежит явление обратного релеевского рассеяния. Для реализации этого метода измеряемое волокно зондируют мощными оптическими импульсами, вводимыми через направленный ответвитель. Вследствие отражения от рассеянных и локальных неоднородностей, распределенных по всей длине волокна, возникает поток обратного рассеяния. Регистрация этого потока позволяет определить функцию затухания по длине с того же конца кабеля, что является важным достоинством метода. Одновременно фиксируют местоположения и характер неоднородностей.
Генератор оптического сигнала в составе рефлектометра посылает короткий импульс, который отражается на неоднородностях А и В. При отражении от каждой неоднородности возникает проходящий и отраженный сигналы. В результате на анализаторе мощности относительно времени прихода импульса можно получить график зависимости отраженного от неоднородностей сигнала от длины линии (рефлектограмму).
На графике этой зависимости представлены следующие изменения отраженного сигнала:
Угол наклона кривой определяет удельное затухание оптического сигнала в линии.
Таким образом, при измерении с одного конца кабеля инженер знает о затухании сигнала в зависимости от длины кабеля. Измерения с одного конца кабеля удобны, дают возможность быстрой локализации неисправности уже уложенного кабеля. Эти преимущества рефлектометров по сравнению с анализаторами потерь оптической мощности, которые требуют организации измерений по схеме "точка-точка", обусловило их популярность в эксплуатации и широкое распространение в современных телекоммуникациях. Кроме этого, нельзя не признать, что визуальный анализ качества кабелей чрезвычайно удобен в эксплуатации.
Рис. 34. Зависимость отражаемой мощности от длины кабеля
Типичная рефлектограмма представлена на рис. 34. На приведенном графике видны отражения, связанные с плохим соединением кабелей, отражение от сварки, областей случайного рассеяния и отражения, связанные с технологическими неоднородностями в материале кабеля, наконец, отражение от дальнего конца кабеля. Начальный выброс уровня обусловлен френелевским отражением в разъемном оптическом интерфейсе, соединяющем прибор с испытуемым кабелем. Точка сочленения кабеля при отсутствии френелевского отражения вносит лишь затухание, величина которого соответствует падению уровня в этой точке. Конец кабеля или его обрыв дают выброс, обусловленный френелевским отражением. При повреждениях кабеля френелевское отражение может отсутствовать (скол волокна в наклонной к оси плоскости), и тогда место обрыва характеризуется резким падением уровня.
По рефлектограмме можно определить величину затухания на разности длин как половину от разности мощностей сигнала на рефлектограмме.
Обычно с одной стороны кабеля рефлектометры позволяют измерять затухание в диапазоне 15-20 дБ, поэтому при превышении этого затухания измерения следует проводить с обеих сторон. На относительно коротких отрезках кабеля это позволяет повысить точность измерений.
Основным недостатком данного метода является небольшой динамический диапазон измерений, что обусловлено малой мощностью излучения обратного рассеяния. Кроме того, рефлектометры довольно дорогие приборы, не всегда доступные для служб эксплуатации.
Применимость метода обратного рассеяния с использованием OTDR требует анализа объективных и субъективных погрешностей измерения. Выше уже обсуждался вопрос о сравнении эффективностей измерения затухания при помощи OTDR и OLTS. Обсуждались также объективные неточности, связанные с принципами работы рефлектометра (разрешающая способность, размер мертвой зоны и т.д.). Однако при проведении измерений с использованием рефлектометров могут возникать не только ошибки, связанные с техническими характеристиками рефлектометра, но и ошибки, связанные с распространением сигнала в оптическом кабеле. Ограничения по точности измерений связаны как с измерением потерь в кабеле, так и с измерениями расстояний.
При измерениях расстояний на точность измерений OTDR влияют два основных фактора:
Скорость распространения оптического сигнала в кабеле является функцией коэффициента преломления стекла, который может варьироваться в пределах нескольких процентов для разных кабелей. Учесть влияние этого параметра можно, протестировав кабель известной длины того же типа.
Вторым параметром, влияющим на точность измерения длин является избыточное количество волокна в кабеле. Обычно при производстве кабеля закладывается избыток волокна в кабеле для повышения устойчивости его к растяжениям и изгибам. Разница между длиной кабеля и длиной волокна в нем составляет 1-2%. Поскольку рефлектометр производит измерения по длине волокна, а не кабеля, избыток волокна приводит к ошибке измерений до 10-20 м на километр кабеля, которую необходимо учитывать при проведении измерений.
При измерениях потерь с использованием рефлектометров возникают два основных вопроса: почему результаты измерений OTDR и OLTS отличаются и почему отличаются результаты измерений с использованием рефлектометра, если измерения проводятся с разных концов кабеля? Для ответа на эти вопросы необходимо еще раз проанализировать работу рефлектометра при измерении потерь в кабеле.
Как описывалось выше, лазерный источник OTDR посылает импульсный сигнал, который отражается от неоднородности и принимается анализатором. Необходимо учитывать, что на принимаемый сигнал оказывают влияние три фактора: затухание сигнала до неоднородности, отражение сигнала и затухание сигнала от неоднородности до анализатора. Обычно предполагается, что коэффициент отражения постоянный, и поэтому можно автокалибровать рефлектометр для измерения затухания в оптическом кабеле. Однако на практике малейшие изменения в диаметре волокна (порядка 1%) приводят к значительному изменению параметра отражения, и как следствие, к значительному изменению значения измеряемого затухания (порядка 0,1 дБ). Так как изменение параметра отражения может изменяться вдоль длины кабеля, это приводит к существенной разнице в измеренных величинах затухания при измерениях с разных концов кабеля.
Возможны три варианта прохождения сигнала через сварочный шов с разными типами рефлектограмм:
Эффективным способом устранения описанных ошибок измерений является проведение измерений с двух сторон кабеля с последующим усреднением. Этот способ обеспечивает высокую точность измерений (до 0,01 дБ), однако ликвидирует основное преимущество использования OTDR - возможность проведения измерений с одного конца кабеля.
Рис. 35. Алгоритм поиска неисправностей в ВОСП
Первой задачей поиска неисправности в ВОСП является анализ, относится ли неисправность к электрической части оборудования или к оптической. Для этого с помощью ОРМ измеряется уровень оптической мощности и затем производится сравнение с нормативным. Если уровень оптической мощности находится в пределах нормы, неисправность находится в электронной части аппаратуры передачи, которая нуждается в замене или ремонте. Если уровень принимаемой мощности слишком низкий, неисправность находится либо в передатчике, либо в волоконно-оптическом кабеле. Для дальнейшего поиска необходимо измерение выходной мощности передатчика, для этого используются ОРМ и тестовый кабель. Если выходная мощность передатчика низкая, он должен быть отремонтирован. Если мощность находится в пределах нормы, неисправность связана с волоконным кабелем.
Поиск неисправности в кабеле начинается с анализа его связности с использованием визуального дефектоскопа в случае кабелей малой протяженности или OTDR в случае протяженных кабелей. Основными неисправностями кабеля обычно являются коннекторы, сварки с плохим качеством, соединения и обрывы кабеля, обусловленные внешними воздействиями. Для поиска неисправности в коннекторах применяются эксплуатационные микроскопы. Для диагностики сварок и локализации обрывов применяются OTDR с учетом описанных выше ограничений на точность измерений.
Основные виды неисправностей в ВОСП приведены в табл. 4.
Таблица 4. Основные виды неисправностей в ВОСП
Неисправность | Причина | Оборудование диагностики | Процедура устранения |
---|---|---|---|
Коннектор | Пыль или загрязнение | Микроскоп | Очищение, полировка, обновление |
Кабель pigtail | Перекручивание кабеля | Визуальный дефектоскоп | Устранение перекручивания |
Локальный всплеск затухания в кабеле | Перекручивание кабеля | OTDR | Устранение перекручивания |
Распределенное увеличение затухания в кабеле | Некачественный кабель | OTDR | Замена участка кабеля |
Потери в сварочном узле | Некачественная сварка Потери, связанные с близким расположением волокон в сварочном узле | OTDR Визуальный дефектоскоп | Вскрытие узла и проведение сварки заново |
Обрыв кабеля | Внешние воздействия | OTDR, визуальный дефектоскоп | Ремонт/замена |
Для проведения аварийных эксплуатационных измерений особенно важным является определение участков и причин деградации качества передачи сигнала. Для этой цели используются рефлектометры.
Понятно что, рефлектограмма не только описывает функцию распределения затухания по длине кабеля, но и может использоваться для локализации участков и причин деградации качества. Так, участки сварочных узлов и точки случайного рассеяния, связанного с дефектами оптического волокна, на рефлектограмме отображаются как точки увеличения затухания без всплеска мощности отраженного сигнала. Это означает, что точки являются точками релеевского рассеяния без френелевского отражения. В то же время точки плохого соединения, обрыва или значительного повреждения кабеля отображаются как точки отражения с характерными всплесками мощности отраженного сигнала.
Рефлектометры обеспечивают анализ кабеля на предмет поиска неоднородностей. При этом визуальный анализ формы рефлектограммы позволяет качественно оценить характер повреждения в кабеле. Спецификой оптического волокна по сравнению с электрическими кабелями является то, что отраженная мощность точки повреждения зависит от угла скола волокон. В случае воздействия на волокно только растягивающей силы возникает плоская поверхность излома, если же волокно разрушается от удара, то поверхность не является плоской. Соответственно будут различаться сигналы на рефлектограмме.
Для поиска неисправностей в оптических коннекторах применяются методы визуального анализа с использованием эксплуатационных микроскопов. Для анализа необходимо правильно выбрать параметр усиления микроскопа (как правило в пределах 30-100 кратного увеличения). Малое увеличение эксплуатационных микроскопов не обеспечивает разрешающей способности, необходимой для поиска дефектов полировки и целостности волокна в коннекторе, с другой стороны, излишне большое увеличение будет приводить к тому, что неоднородности будут казаться более существенными, чем это есть на самом деле. Поэтому обычно выбирается среднее увеличение в описанном диапазоне с учетом субъективно зрительного восприятия монтажника.
Обычно используются три основных схемы визуального анализа коннектора:
Рис. 36. Поиск неисправностей в коннекторах с использованием микроскопа
Анализ коннектора методом прямого наблюдения позволяет проанализировать правильность центрирования, количество связующего вещества и т.д., однако анализ полированной поверхности волокна затруднен, можно увидеть только самые глубокие царапины. Анализ волокна с оптическим сигналом позволяет наблюдать дополнительно трещины и сколы, вызванные давлением или нагреванием в процессе полировки коннектора.
Анализ коннектора методом наблюдения под углом позволяет более детально анализировать полированную поверхность волокна за счет возникающих теней от царапин.
Необходимо очень осторожно относиться к визуальному анализу с использованием микроскопов, поскольку такие измерения не лишены субъективности. Следует помнить, что только дефекты сердцевины оптического волокна приводят к деградации качества оптической передачи. Дефекты стеклянной оболочки волокна практически не влияют на функцию коннектора к передаче оптического сигнала по сердцевине волокна. Таким образом, дефекты оболочки волокна не вызывают дополнительного затухания.
Проектирование волоконно-оптических систем передачи обязательно включает в себя расчет энергетического бюджета оптического сигнала в ВОСП. Реальное значение обычно отличается от расчетного в связи с различием в качестве сварочных узлов, соединений и т.д. Реальное значение энергетического бюджета оптического сигнала, полученное в ходе приемо-сдаточных испытаний, включается в паспорт ВОСП. В связи с тем, что расчетное значение, как правило, имеет запас по мощности по сравнению с реальным значением, возникает вопрос оценки потенциального запаса по мощности в ВОСП. Знание величины этого запаса может быть использовано для анализа влияния различных условий эксплуатации: например, каково предельное значение затухание заданного узла ВОСП, при котором система передачи еще будет работать.
Для анализа этого запаса по мощности применяются принципы стрессового тестирования, т.е. имитации плохих условий функционирования ВОСП. Для имитации плохого качества ВОСП используются оптические аттенюаторы. Измерения могут сопровождаться анализом цифрового канала связи по параметру ошибки (BER) в зависимости от уровня сигнала в линии.
В линию передачи включается оптический аттенюатор, который вносит дополнительное затухание в ВОСП. При этом измеряется зависимость параметра ошибки BER от уровня вносимого затухания. Предельное значение вносимого затухания, при котором аппаратура ВОСП функционирует согласно ТУ, определяет запас по мощности в ВОСП.