Основные параметры оптических усилителей

Оптические усилители можно рассматривать в тех же терминах и используя те же параметры, что и электронные усилители:

Однако они имеют и свои (для ряда применений существенные) параметры:

В общем случае коэффициент усиления оптического усилителя для одного сигнала на центральной частоте имеет вид:

Формула 002

где Формула 003 и Формула 004 - мощности оптического сигнала на входе и выходе усилителя, измеренные на рабочей угловой частоте (или соответствующей длине волны) при малом уровне входного сигнала, гарантирующем отсутствие насыщения выходного сигнала.

Основным активным агентом оптических усилителей является фотон, следовательно, идеальный оптический усилитель с коэффициентом усиления K должен синфазно генерировать на выходе ровно K фотонов на каждый фотон, попавший на его вход. То есть оптический усилитель должен пропорционально усиливать интенсивность входного оптического сигнала, оставляя его форму неизменной, независимо от его интенсивности, длины волны, состояния поляризации, формы отображаемой двоичной последовательности. Фактически же указанные факторы, а также ряд других факторов влияют на АФХ усилительной (или активной) среды g(w) или ее частотный спектр, а затем уже на АФХ собственно ОУ.

Коэффициент усиления среды и усилителя

Практика показывает, что большенство оптических усилительных (активных) сред можно рассматривать как однородную распределенную двухуровневую среду, для которой коэффициент усиления среды на единицу длины может быть описан выражением вида [1]:

Формула 005

Мощность насыщения

Аналогично электронным усилителям модуль усиления ОУ зависит от уровня входного сигнала. До определенного (малого) уровня входной мощности усиление практически постоянно, зятем оно начинает экспоненциально падать (см. рис. 3) с ростом уровня входной мощности. Этот "падающий" участок характеристики является областью насыщения усилителя и объясняется уменьшением коэффициента размножения, вызванным возрастающим с ростом входного сигнала дефицитом частиц, которые способны генерировать вторичные фотоны, на том уровне, где создается инверсия населенности. Эта область численно характеризуется мощностью насыщения Рн на выходе усилителя, определяемой по выходной характеристике на уровне -3 дБм, при котором коэффициент усиления среды g(w) падает в два раза.

Зависимость коэффициента усиления от выходной мощности и определение мощности насыщения

Рис. 3 Зависимость коэффициента усиления от выходной мощности и определение мощности насыщения

Амплитудно-фазовая характеристика ОУ зависит от ряда специфических для ОУ параметров, влияние основных из них оценены ниже.

Вид нормированных АФХ коэффициентов усиления среды и ОУ в целом

Рис. 4 Вид нормированных АФХ коэффициентов усиления среды и ОУ в целом

Влияние насыщения на АФХ

Оно обусловлено третьим слагаемым в выражении [1], которое может приводить к существенному снижению усиления среды в целом, даже в области, казалось бы, далекой от насыщения. Являясь ограничительным фактором, насыщение может играть и регулирующую роль в стабилизации общего коэффициента усиления при каскадном соединении многих усилителей в линии связи, что имеет место, например, на трансокеанских линиях связи.

Влияние времени релаксации диполей на АФХ

Из выражения [1] видно, что АФХ определяется двумя слагаемыми в знаменателе. Если принимать во внимание зависимость от частоты только второго слагаемого, то грубо, в первом приближении, ее можно аппроксимировать профилем Лоренца (см. рис. 4). Тогда, используя его, можно получить, что полная ширина спектра на уровне половины от максимума (FWHM) обратно пропорциональна: формула 006

Влияние длины активной (усиливающей) среды

Мощность усиливаемого оптического сигнала зависит от длины участка среды L от точки входа потока сигнала в усилитель до его выхода. Учитывая это, АФХ усилителя при условии постоянного коэффициента усиления среды g(w) будет иметь вид [2]:

Формула 007

Учитывая экспоненциальный характер этой зависимости, можно констатировать, что спектр G(w) усилителя будет существенно уже спектра g(w) среды, что и видно на рис. 4, где приведены нормированные характеристики G(w) и g(w) в зависимости от расстройки (w - w0).

Чувствительность усиления к поляризации сигнала

Еще одним ограничивающим коэффициент усиления G фактором является чувствительность усиления ОУ к поляризации усиливаемого сигнала, когда усиление может меняться, и иногда значительно, в зависимости от поляризации. Ситуация ухудшается в ВОЛС , учитывая, что в них состояние поляризации сигнала не только не контролируется, но в волокне, даже одномодовом, может хаотически меняться под действием случайных изменений формы сердцевины и анизотропии, вызванной статическим напряжением отрезка оптоволокна (эффекты, известные, применительно к одномодовому ОВ, как модовое двойное лучепреломление). Аналогично страдают и системы с WDM, в которых степень поляризации входных сигналов может быть различной.

Изменение поляризации приводит к паразитной амплитудной модуляции (ПАМ) усиления, которая может носить периодический характер (как, например, для усилителей бегущей волны). Степень такой чувствительности зависит от типа ОУ.

Источники шума и динамический диапазон

Динамический диапазон определяется как диапазон входной мощности оптического сигнала, при котором коэффициент усиления G остается постоянным. Он тесно связан с другим параметром - коэффициентом шума, зависящим от уровня усиленного спонтанного излучения, остаточного сигнала накачки и перекрестной помехи, которые кратко рассмотрены ниже.

Усиленное спонтанное излучение

Оптические усилители добавляют шум к усиливаему оптическому сигналу. Этот шум обусловлен усиленным спонтанным излучением. Оно возникает под действием случайных возмущающих факторов различной физической природы, вызывающих спонтанное излучение, например нагрева усилителя (тепловые фотоны), а также за счет наличия рассеянных фотонов. Шум приводит не только к уменьшению динамического диапазона, но и к снижению максимально допустимого усиления. Уменьшение динамического диапазона обычно характеризуется известным параметром F - коэффициентом шума:

Формула 008

где Формула 009 и Формула 010 значения динамического диапазона на входе и выходе усилителя.

Оценка этого параметра оптических усилителей осуществляется на "электрическом уровне" путем преобразования оптического сигнала в электрический с помощью фотодетектора. Для уменьшения коэффициента шума, вызванного УСИ, сигнал на выходе ОУ фильтруют с помощью полосового оптического фильтра - ПОФ.

Остаточный сигнал накачки

Существует и еще один специфический источник шума в усилителях с накачкой - остаточный сигнал накачки на выходе усилителя, влияние которого (на передатчик или детектор в системе связи) может быть уменьшено как с помощью фильтра на выходе ОУ, так и путем соответствующего выбора частоты источника накачки.

Перекрестные помехи

Этот вид помех характерен для многоканальных усилителей в системах WDM. Он проявляется как паразитные амплитудная или частотная модуляции сигнала одного канала другими сигналами.


Назад Содержание Вперед