МОДЕМНЫЕ ПРОТОКОЛЫ ФИЗИЧЕСКОГО УРОВНЯ

Попробуем дать обзор протоколов физического уровня и их параметров для модемов, работающих по коммутируемым и выделенным каналам связи тональной частоты (телефонным каналам). Перед этим рассмотрим основные термины, касающиеся принципов работы модемов.

Скорость

Аналоговые каналы тональной частоты характеризуются тем, что спектр передаваемого по ним сигнала ограничен диапазоном от 300 Гц до 3400 Гц. Причины, по которым такое ограничение имеет место, пусть останутся за рамками данного реферата. Примем это как данность. Именно это ограничение спектра и является основной преградой в использовании телефонных каналов для высокоскоростной передачи цифровой информации. Скорость передачи информации по каналу с ограниченным спектром не может превосходить ширины этого спектра, т.е.-3100 бод в нашем случае. Но как же тогда быть с модемами, передающими информацию со скоростями 4800, 9600, 14400 бит/с и даже больше? Ответ напрашивается сам: в аналоговой технике передачи данных бод и бит/с не есть одно и то же. Для прояснения этого тезиса стоит рассмотреть внимательнее физический уровень работы модема.

Электрический сигнал, распространяющийся по каналу, характеризуется тремя параметрами - амплитудой, частотой и фазой. Именно изменение одного из этих параметров, или даже совместно некоторой их совокупности в зависимости от значений информационных бит и составляет физическую сущность процесса модуляций. Каждому информационному элементу соответствует фиксированный отрезок времени, на котором электрический сигнал имеет определённые значения своих параметров, характеризующих значение этого информационного элемента. Этот отрезок времени называют бодовым интервалом. Если кодируемый элемент соответствует одному биту, информации, который может принимать значение 0 или 1, то на бодовом интервале параметры сигнала соответственно могут принимать одну из двух предопределенных совокупностей значении амплитуды, частоты и фазы. В этом случае модуляционная скорость (еще ее называют линейной или бодовой равна информационной, т.е. 1 бод = 1 бит/с. Но кодируемый элемент может соответствовать не одному, а, например, двум битам информации. В этом случае информационная скорость будет вдвое превосходить бодовую, а параметры сигнала на бодовом интервале могут принимать одну из четырех совокупностей значений, соответствующих 00, 01, 10 или 11.

Модуляция

Говоря о видах модуляции, ограничимся только теми, которые реально используются в модемах. А таких на самом деле всего три: частотная, фазоразностная и многопозиционная амплитудно-фазовая. Все остальные - не более чем вариация этих трех.

При частотной модуляции (FSK, Frequency Shift Keying) значениям 0 и 1 информационного бита соответствуют свои частоты физического сигнала при неизменной его амплитуде. Частотная модуляция весьма помехоустойчива, поскольку искажениям при помехах подвергается в основном амплитуда сигнала, а не частота. При этом достоверность демодуляции, а значит и помехоустойчивость тем выше, чем больше периодов сигнала попадает в бодовый интервал. Но увеличение бодового интервала по понятным причинам снижает скорость передачи информации. С другой стороны, необходимая для этого вида модуляции ширина спектра сигнала может быть значительно уже всей полосы канала. Отсюда вытекает область применения FSK- низкоскоростные, но высоко надежные стандарты, позволяющие осуществлять связь на каналах с большими искажениями АЧХ, или даже с усеченной полосой пропускания.

При фазоразностной модуляции (DPSK, Differential Phase Shift Keying) изменяемым в зависимости от значения информационного элемента параметром является фаза сигнала при неизменной амплитуде и частоте. При этом каждому информационному элементу ставится в соответствие не абсолютное значение фазы, а ее изменение относительно предыдущего значения. Если информационный элемент есть дибит, то в зависимости от его значения (00,01,10,11) фаза сигнала может изменяться на 90, 180, 270 градусов или не изменяться вовсе. Из теории информации известно, что фазовая модуляция наиболее информативна, однако увеличение числа кодируемых бит выше трех (8 позиций поворота фазы) приводит к резкому снижению помехоустойчивости. Поэтому на высоких скоростях применяются комбинированные амплитудно-фазовые методы модуляции.

Многопозиционную амплитудно-фазовую модуляцию называют еще квадратурной амплитудной модуляцией (QAM, Quadrature Amplitude Modulation). Здесь помимо изменения фазы сигнала используется манипуляция его амплитудой, что позволяет увеличивать число кодируемых бит. В настоящее время используются модуляции, в которых количество кодируемых на одном бодовом интервале информационных бит может доходить до 8, а, соответственно, число позиций сигнала в сигнальном пространстве - до 256 (В протоколе V.34 - до 9 бит). Однако, применение многоточечной QAM в чистом виде сталкивается с серьезными проблемами, связанными с недостаточной помехоустойчивостью кодирования. Поэтому во всех современных высокоскоростных протоколах используется разновидность этого вида модуляции, т.н. модуляция с решетчатым кодированием или треллис-кодированием (TCM, Trellis Coded Modulation), которая позволяет повысить помехозащищенность передачи информации - снизить требования к отношению сигнал/шум в канале на величину от 3 до 6 дБ.

Дуплекс

Под дуплексным режимом работы понимается возможность передавать информацию в обе стороны одновременно. Обычный телефонный канал - типичный пример дуплексного канала. Он позволяет Вам говорить что-то своему собеседнику в то же самое время, когда тот в свою очередь пытается что-то сообщить Вам. Другой вопрос, поймете ли Вы друг друга. Аналогию в полной мере можно отнести и модемной связи. Проблема для модема будет заключаться не в способности канала передавать дуплексную информацию, а возможности демодулятора модема распознать входной сигнал на фоне отраженного от аппаратуры АТС собственного выходного сигнала, который фактически становится для модема шумом. При этом его мощность может быть не только сравнима, но в большинстве случаев значительно превосходить мощности принимаемого полезного сигнала. Поэтому, могут ли модемы передавать информацию одновременно в обе стороны определяется возможностями протокола физического уровня.

Каковы же способы обеспечения дуплекса? Самый очевидный способ, не требующий от разработчиков модемов особой фантазии, но зато требующий от телефонной сети возможности подключения к четырехпроводному окончанию, вытекает из упомянутой возможности. Если такая возможность есть, то в этом случае каждая пара используется для передачи информации только в одном направлении.

Если же необходимо обеспечивать дуплекс при работе по двухпроводной линии, то приходится использовать другие способы. Одним из них является частотное разделение каналов. Вся полоса пропускания канала разделяется на два частотных подканала, по каждому из которых производится передача в одном направлении. Выбор подканала передачи осуществляется на этапе установки соединения и, как правило, однозначно связан с ролью модема в сеансе связи: вызывающий или отвечающий. Очевидно, что этот метод не позволяет использовать возможности канала в полном объеме ввиду значительного сужения полосы пропускания. Тем более, что для исключения проникновения боковых гармоник в соседний подканал, разносить их приходится со значительным "зазором", в результате чего частотные подканалы занимают отнюдь не половину полного спектра. Соответственно, данный метод обеспечения дуплексной связи ограничивает скорость передачи информации. Существующие протоколы физического уровня, использующие частотное разделение каналов, обеспечивают симметричную дуплексную связь со скоростями, не превышающими 2400 бит/с.

Оговорка про симметричный дуплекс не случайна. Дело в том, что ряд протоколов обеспечивают и более скоростную связь, но в одном направлении, в то время как обратный канал - значительно медленнее. Разделение частот в этом случае осуществляется на неравные по ширине полосы пропускания подканалы. Эта разновидность дуплексной связи называется асимметричной.

Другим методом обеспечения симметричного дуплекса, который используется во всех высокоскоростных протоколах, является технология эхо-подавления (эхо-компенсации). Суть ее заключается в том, что модемы, обладая информацией о собственном выходном сигнале, могут использовать это знание для фильтрации собственного "рукотворного" шума из принимаемого сигнала. На этапе вхождения в связь каждый модем, посылая некий зондирующий сигнал, определяет параметры эхо-отражения: время запаздывания и мощность отраженного сигнала. А в процессе сеанса связи эхо-компенсатор модема "вычитает" из принимаемого входного сигнала свой собственный выходной сигнал, скорректированный в соответствии с полученными параметрами эхо-отражения. Эта технология позволяет использовать для дуплексной передачи информации всю ширину полосы пропускания канала, однако требует при реализации весьма серьезных вычислительных ресурсов на сигнальную обработку.

Наконец, стоит отметить, что многие протоколы и не пытаются обеспечить дуплексную связь. Это так называемые полудуплексные протоколы. В частности, все протоколы, предназначенные для факсимильной связи - полудуплексные. В этом случае в каждый момент времени информация передается только в одну сторону. По окончании приема/передачи некоторой порции информации оба модема (факса) синхронно переключают направление передачи данных (ping-pong). Ввиду отсутствия проблем с взаимным проникновением подканалов передачи, а также с эхо-отражением, полудуплексные протоколы в общем случае характеризуются большей помехоустойчивостью и возможностью использования всей ширины полосы пропускания канала. Однако эффективность использования канала для передачи данных по сравнению с дуплексными протоколами ниже. Связано это, прежде всего с тем, что практически все протоколы передачи данных, как канального уровня (MNP,V.42), так и уровня передачи файлов (X, Y, Zmodem, не говоря уже о протоколах типа BiDirectional), требуют двустороннего обмена, по крайней мере, для подтверждения принятой информации. А любое переключение направления передачи, помимо невозможности в данный момент передавать очередную порцию пользовательской информации, требует дополнительных накладных расходов по времени на взаимную пересинхронизацию приемной и передающей сторон.

Общеупотребительные модемные протоколы ITU-T

V.21

Это дуплексный протокол с частотным разделением каналов и частотной же модуляцией FSK. На нижнем канале (его обычно использует для передачи вызывающий модем) "1" передается частотой 980 Гц, а "О" - 1180 Гц. На верхнем канале (передает отвечающий) "1" передается частотой 1650 Гц, а "О" -1850 Гц. Модуляционная и информационная скорости равны -300 бод, 300 бит/с. Несмотря на невысокую скорость, данный протокол находит применение, прежде всего в качестве "аварийного", при невозможности вследствие высокого уровня помех использовать другие протоколы физического уровня. Кроме того, ввиду своей неприхотливости и помехоустойчивости, он используется в специальных высокоуровневых приложениях, требующих высокой надежности передачи. Например, при установке соединения между модемами по новой Рекомендации V.8, или для передачи управляющих команд при факсимильной связи (верхний канал).

V.22

Это дуплексный протокол с частотным разделением каналов и модуляцией DPSK. Несущая частота нижнего канала (передает вызывающий) - 1200 Гц, верхнего (передает отвечающий) - 2400 Гц. Модуляционная скорость - 600 бод. Имеет режимы двухпозиционной (кодируется бит) и четырехпозиционной (дибит) фазоразностной модуляции с фазовым расстоянием между точками, соответственно, в 180° и 90°. Соответственно, информационная скорость может быть 600 или 1200 бит/с. Этот протокол фактически поглощен протоколом V.22bis.

V.22bis

Это дуплексный протокол с частотным разделением каналов и модуляцией QAM. Несущая частота нижнего канала (передает вызывающий) - 1200 Гц, верхнего - 2400 Гц. Модуляционная скорость - 600 бод. Имеет режимы четырехпозиционной (кодируется дибит) и шестнадцатипозиционной (кодируется квадробит) квадратурной амплитудной модуляции. Соответственно, информационная скорость может быть 1200 или 2400 бит/с. Режим 1200 бит/с полностью совместим с V.22, несмотря на другой тип модуляции. Дело в том, что первые два бита в режиме 16-QАМ (квадробит) определяют изменение фазового квадранта относительно предыдущего сигнального элемента и потому за амплитуду не отвечают, а последние два бита определяют положение сигнального элемента внутри квадранта с вариацией амплитуды. Таким образом, DPSK можно рассматривать как частный случай QAM, где два последних бита не меняют своих значений. В результате из шестнадцати позиций выбираются четыре в разных квадрантах, но с одинаковым положением внутри квадранта, в том числе и с одинаковой амплитудой. Протокол V.22bis является стандартом де-факто для всех среднескоростных модемов.

V.32

Это дуплексный протокол с эхо-подавлением и квадратурной амплитудной модуляцией или модуляцией с решетчатым кодированием. Частота несущего сигнала - 1800 Гц, модуляционная скорость - 2400 бод. Таким образом, используется спектр шириной от 600 до 3000 Гц. Имеет режимы двухпозиционной (бит), четырехпозиционной (дибит) и шестнадцатипозиционной (квадробит) QAM. Соответственно, информационная скорость может быть 2400, 4800 и 9600 бит/с. Кроме того, для скорости 9600 бит/с имеет место альтернативная модуляция - 32-позиционная ТСМ.

V.32bis

Это дуплексный протокол с эхо-подавлением и модуляцией ТСМ. Используются те же, что в V.32, частота несущего сигнала - 1800 Гц, и модуляционная скорость - 2400 бод. Имеет режимы 16-ТСМ, 32-ТСМ, 64-ТСМ и 128-ТСМ. Соответственно, информационная скорость может быть 7200, 9600, 12000 и 14400 бит/с. Режим 32-ТСМ полностью совместим с соответствующим режимом V.32. Протокол V.32bis является стандартом де-факто для всех скоростных модемов.

 

Экзотические модемные протоколы ITU-T

V.23

Это полудуплексный протокол с частотной модуляцией FSK. В нем имеется два скоростных режима: 600 бит/с и 1200 бит/с. Модуляционная и информационная скорости равны: соответственно, 600 и 1200 бод. В обоих режимах "1" передается частотой 1300 Гц. В режиме 600 бит/с "О" передается частотой 1700 Гц, а в режиме 1200 бит/с - частотой 2100 Гц. Реализация протокола опционально может включать обратный канал, работающий на скорости 75 бит/с, что превращает протокол в асимметричный дуплексный. Частота передачи "1" в обратном канале 390 Гц, "О" - 450 Гц. Это протокол практически вышел из употребления в качестве стандартного протокола меж модемной связи, и далеко не всякий стандартный модем им оснащен.

V.26, V.26bis, V.26ter

Эти три протокола объединяет тип модуляции -DPSK, частота несущей - 1800 Гц и модуляционная скорость -1200 бод. Разница между ними заключаете в возможности и способах обеспечения дуплексной связи и в информационной скорости. V.26 обеспечивает дуплекс только по четырехпроводной выделенной линии, V26bis - это полудуплексный протокол, пред назначенный для работы по двухпроводной коммутируемой линии, а Vter обеспечивает полный дуплекс помощью технологии эхо-подавления. Кроме тоге первые два протокола могут быть асимметричным дуплексными, опционально включая обратный канал, работающий на скорости 75 бит/с в соответствии с V.23. Все три протокола обеспечивают скорость передач информации 2400 бит/с посредством четырехпозиционной (дибит)DPSK. V.26bis и V.26ter, кроме того имеют режим двухпозиционной (бит) DPSK, обеспечивая скорость 1200 бит/с.

V.ЗЗ

В этом протоколе используется модуляция с решетчатым кодированием ТСМ. Он предназначен для обеспечения дуплексной связи на четырехпроводных выделенных каналах. Имеет частоту несущего сигнал 1800 Гц, и модуляционную скорость 2400 бод. Работает в режимах 64-ТСМ и 128-ТСМ. Соответственно информационная скорость может быть 12000 и 1440 бит/с. Этот протокол очень напоминает V.32bis без эхо-подавления. Более того, если модем с протоколом V.3З установить на четырехпроводное окончание до дифференциальной системы АТС, то он вполне сможет связаться с удаленным модемом V.32bis, установленным на двухпроводной линии.

Общеупотребительные факс-протоколы ITU-T

V.27ter

В этом протоколе применяется фазоразностная модуляция с частотой несущего сигнала 1800 Гц. Могут использоваться два режима с разными информационными скоростями: 2400 и 4800 бит/с. Информационная скорость 2400 бит/с достигается модуляционной скоростью 1200 бод и кодированием дибита (4-позиционный DPSK), а 4800 бит/с - скоростью 1600 бод и кодированием трибита (8-позиционный DPSK). Стоит отметить, что существуют еще малоупотребительные модемные протоколы данного семейства - V.27 и V.27bis, которые отличаются отV.27ter, главным образом, типом канала (выделенный четырехпроводный), для которого они предназначены.

V.29

В этом протоколе применяется квадратурная амплитудная модуляция. Частота несущего сигнала - 1700 Гц, модуляционная скорость - 2400 бод. Имеет режимы 8-позиционной (трибит) и 16-позиционной (квадробит) QАМ. Соответственно, информационная скорость может быть 7200 и 9600 бит/с.

V.17

Этот протокол по своим параметрам очень напоминает V.32bis. В нем используется модуляция с решетчатым кодированием. Частота несущего сигнала -1800 Гц, и модуляционная скорость - 2400 бод. Имеет режимы 16-ТСМ, 32-ТСМ, 64-ТСМ и 128-ТСМ. Соответственно, информационная скорость может быть 7200, 9600, 12000 и 14400 бит/с.

Нестандартные модемные протоколы

V.32terbo

Этот протокол, разработанный фирмой АТ&Т (в настоящее время Lucent Technologies), является открытым для реализации разработчиками модемов. В частности, помимо БИС фирмы АТ&Т, данный протокол реализован в некоторых модемах фирмы U.S.Robotics (в настоящее время 3Com). Протокол фактически является механическим развитием технологии V.32bis: дуплекс с эхо-подавлением, модуляция с решетчатым кодированием, модуляционная скорость - 2400 бод, несущая - 1800 Гц, расширение информационных скоростей значениями 16800 и 19200 бит/с за счет 256-ТСМ и 512-ТСМ. Следствием такого подхода является весьма жесткие требования, предъявляемые данным протоколом к линии. Так, например, для устойчивой работы на скорости 19200 бит/с отношение сигнал/шум должно быть не менее З0 дБ.

ZyX

Протокол разработан фирмой ZyXEL Communications Corporation и реализован в собственных модемах. Этот протокол также, как и V.32terbo, расширяет V.32bis значениями информационных скоростей 16800 и 19200 бит/с с сохранением технологии эхо-подавления, модуляции с треллис-кодированием и несущей 1800 Гц. Модуляционная же скорость 2400 бод сохраняется лишь для 16800 бит/с. Скорость 19200 бит/с обеспечивается повышением модуляционной скорости до 2743 бод при сохранении режима модуляции 256-ТСМ для обеих скоростей. Такое решение позволяет снизить требование к отношению сигнал/шум на линии на 2.4 дБ, однако расширение полосы пропускания может негативно сказываться при больших искажениях амплитудно-частотной характеристики канала.

HST

Протокол НSТ (High Sрееd Тесhnо1оgу) разработан фирмой U.S.Rоbоtiсs (в настоящее время 3Com) и реализован в модемах фирмы серии Courier. Это асимметричный дуплексный протокол с частотным разделением каналов. Обратный канал имеет режимы 300 и 450 бит/с. Основной канал - 4800, 7200, 9600, 12000, 14400 и 16800 бит/с. Применяется модуляция с решетчатым кодированием и модуляционной скоростью 2400 бод. Характеризуется сравнительной простотой и высокой помехоустойчивостью вследствие отсутствия необходимости в эхо-компенсации и отсутствия же взаимовлияния каналов.

РЕР, TurboPEP

Полудуплексные протоколы семейства РЕР (Расkеtizеd Ensеmblе Рrоtосоl) разработаны фирмой Tе1еbit и реализованы в модемах фирмы серий ТrаilВ1аzеr (РЕР) и Wоr1dВ1аzеrurbоРЕР). В этих протоколах принципиально иным образом используется вся полоса пропускания канала тональной частоты для высокоскоростной передачи данных. Весь канал разбивается на множество узкополосных частотных подканалов, по каждому из которых независимо передается своя порция бит из общего потока информации. Такого рода протоколы называют многоканальными, или параллельными, или протоколами с множеством несущих (multicarrier). В протоколе РЕР канал разбивается на 511 подканалов. В каждом подканале шириной около 6 Гц с модуляционной скоростью от 2 до 6 бод с помощью квадратурной амплитудной модуляции кодируются от 2 до 6 бит на бод. Имеется несколько степеней свободы для обеспечения максимальной пропускной способности каждого конкретного канала, имеющего свои характеристики по части искажений и помеховой обстановки. В процессе установки соединения каждый частотный подканал независимо тестируется и определяется возможность его использования, а также параметры: модуляционная скорость подканала и число позиций модуляции. Максимальная скорость передачи по протоколу РЕР может достигать 19200 бит/ с. В процессе сеанса при ухудшении помеховой обстановки параметры подканалов могут меняться, а некоторые подканалы - отключаться. При этом декремент понижения скорости не превышает 100 бит/с. Протокол TurboРЕР за счет увеличения числа подканалов, а также количества кодируемых на одном бодовом интервале бит, может достигать скорости 23000 бит/с. Кроме того, в протоколе TurboPEP применяется модуляция с треллис-кодированием, что увеличивает помехоустойчивость протокола.

Основными преимуществами этих протоколов является слабая чувствительность к искажениям амплитудно-частотной характеристики канала и значительно меньшая чувствительность к импульсным помехам по сравнению с традиционными протоколами. Если первое не вызывает вопросов, то по части импульсных помех требуются некоторые комментарии. Дело в том, что хотя импульсная помеха "бьет" практически по всей ширине спектра, т.е. по всем подканалам, но в связи со значительно большей длительностью сигнала по сравнению с традиционными протоколами (6 бод против 2400), искаженная помехой доля сигнала много меньше, что позволяет в ряде случаев нормально его демодулировать.

И последнее, что стоит отметить, это то, что в ряде стран протоколы этого типа запрещены для использования на коммутируемых телефонных каналах. Возможно потому, что многоканальные протоколы позволяют успешно работать даже на линиях, на которых ретивыми канализаторами установлены режекторные фильтры (для того, по-видимому, чтобы лишить клиентов, в чем-то провинившихся, возможности использовать телефонные каналы для передачи данных с помощью стандартных модемов).

И, напоследок

Практически полное отсутствие упоминания о последних достижениях в области сверхскоростной передачи данных по телефонным каналам - проекты V.fast разных фирм, V.FC фирмы Rockwell International и, наконец, Рекомендация V.34 ITU-Т - в обзоре модемных протоколов физического уровня может показаться вызывающим. Однако, если лишь только слегка затронуть тему V.34, выяснится, что это не просто очередной шаг на пути увеличения скорости модемной связи, а огромный революционный прорыв в стремлении выбрать все резервы канала тональной частоты. Прорыв, некоторым образом, в мировоззрении, демонстрирующий общесистемный подход к проблеме, и опирающийся на резкий технологический скачок в инструментальных средствах, что позволяет приблизиться максимально близко к теоретическому пределу Шеннона.

Итак:

V.34

Ключевым моментом, позволяющим увеличить скорость, является более полное использование той полосы частот, которую имеет аппаратура, входящая в состав коммутируемой сети. По рекомендации V.34 полоса частот должна быть адаптивно меняющейся величиной. Рекомендация предусматривает 6 символьных скоростей, равных 2400, 2743, 2800, 3000, 3200 и 3429 символов/с. В рекомендации предусмотрена система помехоустойчивого кодирования: здесь используется четырехмерная сигнально-кодовая конструкция со сверточным кодом на 16, 32 и 64 состояния. В рекомендации V.34 используется амплитудно-фазовая предкоррекция сигнала передатчика. Кроме того, в рекомендации заложена возможность выбора одного из 11 заранее оговоренных шаблонов для спектра сигнала передатчика. Эти шаблоны предполагают подъем высокочастотных составляющих спектра, что должно скомпенсировать искажения, вносимые абонентскими и соединительными линиями. Другим немаловажным фактором, обеспечивающим устойчивую работу модема, в первую очередь по каналам ИКМ, стало введение в передаваемый сигнал нелинейных искажений. Это позволяет частично скомпенсировать специфические нелинейные искажения сигнала, вносимые аппаратурой ИКМ.

previous home next

Hosted by uCoz