Наиболее современной технологией, используемой в настоящее время для построения сетей связи, является синхронная цифровая иерархия (СЦИ) (Synchronous Digital Hierarchy - SDH). Она обладает существенными преимуществами по сравнению с системами предшествующих поколений, позволяет полностью реализовать возможности волоконно-оптических и радиорелейных линий, создавать гибкие, надежные, удобные для эксплуатации, контроля и управления сети, гарантируя высокое качество связи. Системы СЦИ обеспечивают скорости передачи от 155 Мбит/с и выше и могут транспортировать как сигналы существующих ЦСП, так и новых перспективных служб, в том числе широкополосных. Аппаратура СЦИ является программно управляемой и интегрирует в себе средства преобразования, передачи, оперативного переключения, контроля, управления.
СЦИ это новые мощные системы передачи, но и не только. Это и принципиальные изменения в сетевой архитектуре, организации управления. Внедрение СЦИ будет иметь далеко идущие последствия и для сетевых операторов, и для пользователей, и для производителей оборудования.
Хотя ЦСП плезиохронной иерархии были значительным шагом в развитии связи по сравнению с аналоговыми системами, тем не менее ЦСП ПЦИ присущ ряд недостатков.
Во-первых, наличие трех различных иерархий (европейской, североамериканской и японской) крайне затрудняет организацию международной связи.
Во-вторых, в ЦСП ПЦИ затруднен ввод/вывод цифровых потоков в промежуточных пунктах и возникает парадоксальная ситуация, когда для выделения низкоскоростного потока требуется непропорционально большое количество сложного оборудования (см. Рис. 6.30). Данный недостаток становится особенно существенным при необходимости частого ввода/вывода цифровых потоков вдоль магистрали.
Кроме того, существенным недостатком ПЦИ является отсутствие средств сетевого автоматизированного контроля и управления, без которых невозможно создать сеть связи, удовлетворяющую современным требованиям к качеству обслуживания и надежности. Такие средства (в ограниченном объеме) имеются в ПЦИ лишь на уровне линий передачи, однако, они не стандартизированы, поэтому разработанные различными производителями оборудования ПЦИ системы контроля и управления линейных трактов несовместимы. Они не способны осуществлять контроль и управление групповыми трактами "из конца в конец" и тем более всей сетью.
При нарушениях синхронизации группового сигнала в ПЦИ сравнительно большое время требуется на многоступенное восстановление синхронизации компонентных потоков.
Преодолеть недостатки, оставаясь в рамках ПЦИ, было невозможно. Поэтому, когда в середине 80-х годов применение волоконно-оптических линий связи позволило существенно повысить скорости передачи, а внедрение цифровых коммутационных станций дало возможность создавать полностью цифровые синхронные сети, началась работа по переходу к СЦИ.
В качестве линий связи в СЦИ применяются ВОЛС. Неслучайно американский вариант СЦИ носит название SONET - от английских слов Synchronous Optical NETwork, что переводится как "синхронная оптическая сеть". В европейском варианте СЦИ возможно использование и радиорелейных линий (см. подраздел 6.4.5), которые применяются довольно давно, поэтому достаточно хорошо известны специалистам.
СЦИ позволяет организовать универсальную транспортную систему, охватывающую все участки сети и выполняющую функции как передачи информации, так и контроля и управления. Она рассчитана на транспортирование всех сигналов ПЦИ, а также всех действующих и перспективных служб, в том числе и широкополосной цифровой сети с интеграцией служб (В-ISDN), использующей асинхронный способ переноса (АТМ).
В СЦИ использованы последние достижения в электронике, системотехнике, вычислительной технике и т.п. Ее применение позволяет существенно сократить объем и стоимость аппаратуры, эксплуатационные расходы, сократить сроки монтажа и настройки оборудования. В то же время значительно повышаются надежность и живучесть сетей, их гибкость, качество связи.
Линейные сигналы СЦИ организованы в так называемые синхронные транспортные модули STM (Synchronous Transport Module) (Табл. 6.3). Первый из них - STM-1 - соответствует скорости 155 Мбит/с. Каждый последующий имеет скорость в 4 раза большую, чем предыдущий, и образуется побайтным синхронным мультиплексированием. Уже стандартизированы STM-4 (622 Мбит/с) и STM-16 (2,5 Гбит/с), ожидается принятие и STM-64 (10 Гбит/с).
Табл. 6.3
Уровень |
Модуль |
Скорость передачи |
1 |
STM-1 |
155 Мбит/с |
4 |
STM-4 |
622 Мбит/с |
16 |
STM-16 |
2,5 Гбит/с |
Как уже отмечалось, основной средой передачи для СЦИ являются ВОЛС. Возможно также использование радиолиний. В тех случаях, когда пропускная способность радиолиний недостаточна для STM-1, может применяться субпервичный транспортный модуль STM-RR со скоростью передачи 52 Мбит/с (втрое меньше, чем у STM-1). Однако STM-RR не является уровнем СЦИ и не может использоваться на интерфейсах сетевых узлов.
В сети СЦИ используется принцип контейнерных перевозок. Подлежащие транспортированию сигналы предварительно размешаются в стандартных контейнерах С (Container). Все операции производятся с контейнерами независимо от их содержимого. Благодаря этому и достигается прозрачность сети СЦИ, т.е. возможность транспортировать различные сигналы ПЦИ, потоки ячеек АТМ или какие-либо другие сигналы.
Имеются контейнеры 4-х уровней. Все они, вместе с сигналами ПЦИ в них размещаемыми, указаны в Табл. 6.4 (скорость 8 Мбит/с европейской ПЦИ не дана, т.к. в настоящее время контейнер С-2 предназначен для новых сигналов с неиерархическими скоростями, например, ячеек АТМ).
Табл. 6.4
Уровень |
Контейнер |
Сигнал ПЦИ, Мбит/с |
1 |
С-11 С-12 |
1,5 2 |
2 |
С-2 |
6 |
3 |
С-3 |
34 и 45 |
4 |
С-4 |
140 |
Принципы размещения сигналов в контейнерах и схема преобразования последних для транспортирования в синхронных транспортных модулях описаны ниже.
Важной особенностью сети СЦИ является ее деление на три функциональных слоя, которые подразделяются на подслои (Табл. 6.5). Каждый слой обслуживает вышележащий слой и имеет определенные точки доступа. Слои имеют собственные средства контроля и управления, что упрощает операции по ликвидации последствий отказов и снижает их влияние на вышележащие слои. Независимость слоев позволяет внедрять, модернизировать или заменять их, не затрагивая другие слои.
Табл. 6.5
Слои |
Подслои |
|
Каналы |
||
Тракты |
Низшего порядка |
|
Высшего порядка |
||
Секции |
мультиплексные |
|
Среда передачи |
регенерационные |
|
Физическая среда |
Самый верхний слой образует сеть каналов, обслуживающих конечных пользователей. Группы каналов объединяются в групповые тракты различных порядков (средний слой). Групповые тракты организуются в линейные тракты, относящиеся к нижнему слою среды передачи. Он подразделяется на слой секций (мультиплексных и регенерационных) и слой физической среды. Взаимосвязь и расположение некоторых слоев показаны на Рис. 6.34.
Рис. 6.34. Функциональные слои
Общая схема преобразований СЦИ изображена на Рис. 6.35. Ее сложность обусловлена тем, что она фактически объединяет две схемы: европейскую и американскую (SONET). Если выделить схему, принятую ETSI, то получится более простая и стройная система, представленная на Рис. 6.36. Именно она предусмотрена "Регламентом СЦИ для сети связи России", который утвержден ГКЭС в качестве технической правовой базы применения СЦИ на общегосударственной сети России.
Далее будет рассматриваться именно европейская схема.
Рис. 6.35. Общая схема преобразований СЦИ
Рис. 6.36. Европейская схема преобразований СЦИ
Выше уже вводились информационные структуры, фигурирующие на входе и выходе схемы преобразований: контейнеры С и синхронные транспортные модули STM. Ниже будет описан целый ряд промежуточных структур. Не следует искать в их названиях какой-либо глубокий смысл - они являются переводом с английского, причем особого смысла не было и в оригинальных англоязычных названиях.
Для организации трактов используются виртуальные контейнеры VC (Virtual Container). Они образуются добавлением к соответствующему контейнеру трактового заголовка РОН (Path OverHead), т.е. условно можно записать: VC = С + РОН
Как уже отмечалось выше, европейский стандарт не включает контейнер С-2. Соответствующий виртуальный контейнер VC-2 предназначен для транспортирования не сигналов ПЦИ, а новых сигналов с неиерархическими скоростями (например, ячеек АТМ).
Виртуальные контейнеры формируются и расформировываются в точках окончания трактов. Трактовый заголовок позволяет осуществлять контроль качества трактов "из конца в конец" и передавать аварийную и эксплуатационную информацию.
Тракты, соответствующие виртуальным контейнерам 1-го и 2-го уровня VC-11 и VC-12, относятся к трактам низшего порядка, а виртуальным контейнерам 3-го и 4-го уровней VC-3 и VC-4 - высшего.
При мультиплексировании циклы различных компонентных потоков могут не совпадать как между собой, так и с циклом агрегатного потока. В ПЦИ этому не придается значение, именно поэтому операции ввода-вывода там столь громоздки (см. Рис. 6.30). Для разрешения указанной проблемы в СЦИ служат указатели PTR (pointer). Они указывают, где именно внутри цикла синхронного транспортного модуля STM-1 находятся начальные позиции циклов компонентных потоков. Это позволяет легко производить ввод-вывод потоков.
Виртуальные контейнеры 1-го, 2-го и 3-го уровней вместе с соответствующими указателями образуют субблоки TU (Tributary Unit), а 4-го уровня - административный блок AU (Administrative Unit). Таким образом, TUn = VCn + TU_PTR (n=11, 12, 2, 3); AU-4 = VC-4 + AU_PTR.
Один или несколько субблоков, занимающих определенные фиксированные позиции в нагрузке виртуального контейнера высшего порядка, называются группой субблоков TUG (Tributary Unit Group). Группы определены так, чтобы получить возможность образования смешанной нагрузки из субблоков разных уровней для увеличения гибкости транспортной сети.
Один или несколько административных блоков, занимающих определенные фиксированные позиции в нагрузке STM, называются группой административных блоков AUG (Administrative Unit Group). В европейской схеме преобразований (см. Рис. 6.36) она состоит из одного AU-4.
Наконец, синхронный транспортный модуль STM-1 образуется добавлением к группе административных блоков AUG секционного заголовка SOH (Section OverHead), который состоит из заголовков мультиплексной MSOH (Multiplexer Section OverHead) и регенерационной секций RSOH (Regenerator Section OverHead). Эти заголовки служат для контроля, управления и ряда других функций. При этом RSOH передается между соседними регенераторами, а MSOH - между пунктами, где формируются и расформировываются STM, проходя регенераторы транзитом. Таким образом, STM-1 = AUG + SOH, где SOH = RSOH + MSOH.
Каждая из описанных выше информационных структур служит для транспортирования информации на определенном слое сети СЦИ или для согласования между собой двух смежных слоев. Соответствие между слоями или межслоевыми взаимодействиями и информационными структурами показано в Табл. 6.6.
Табл. 6.6
Слои |
Информационные структуры |
||
Каналы |
|||
Контейнеры С |
|||
Низшего порядка |
Виртуальные контейнеры VC-12,VC-2 |
||
Тракты |
Субблоки TU и их рабочие группы TUG |
||
Высшего порядка |
Виртуальные контейнеры VC-3, VC-4 |
||
Административный блок AU |
|||
Среда |
Секции |
Синхронные транспортные модули STM |
|
передачи |
Физическая среда |
Преобразовательные процедуры СЦИ разделяются на три категории. На Рис. 6.35 и Рис. 6.36 им соответствуют различные линии.
Поступающие цифровые потоки размещаются на определенных позициях циклов виртуальных контейнеров. Учитывая широкое и разнообразное использование в современных сетях связи потока в 2 Мбит/с, предусмотрены различные варианты его размещения в контейнере С-12. Асинхронное размещение может применяться на первых этапах развертывания СЦИ при работе синхронных участков в плезиохронном окружении. При создании синхронных зон целесообразно синхронное размещение, имеющее две разновидности. Байт-синхронное размещение представляет доступ к составляющим каналам в 64 кбит/с, т.к. при этом октеты (байты) потока 2 Мбит/с совпадают с байтами контейнера. Бит-синхронное размещение применяется для сигналов, не имеющих октетной структуры.
Как уже указывалось, добавляемые к виртуальным контейнерам при формировании субблоков и административных блоков указатели позволяют динамично компенсировать изменения скорости и фазы нагрузки блоков. Соответствующая процедура названа выравниванием.
Наконец, мультиплексирование позволяет согласовать несколько сигналов слоя трактов низшего порядка с трактом высшего порядка или несколько сигналов тракта высшего порядка с мультиплексной секцией. Числа, стоящие вместе со знаком умножения, указывают количество объединяемых потоков.
Например, для потока в 2 Мбит/с вся цепочка преобразований в соответствии со схемой Рис. 6.36 представлена на Рис. 6.37.
Рис. 6.37. Цепочка преобразований для потока 2 Мбит/с
Циклы основных информационных структур СЦИ принято изображать графически в виде прямоугольных таблиц. Каждая клеточка такой таблицы соответствует байту. Порядок передачи байтов - слева направо, сверху вниз (так же, как при чтении текста на странице). Первый байт цикла размешается в левом верхнем углу таблицы, последний - в правом нижнем.
На Рис. 6.38 изображен цикл STM-1. Он имеет период повторения 125 мкс. Таблица имеет 9 рядов и 270 столбцов. Таким образом, каждая клеточка соответствует скорости передачи 8 бит/125 мкс = 64000 бит/с = 64 кбит/с, а вся таблица - 9 ´ 270 ´ 64 кбит/с = 155520 кбит/с.
Рис. 6.38. Формат цикла STM-1
Первые 9 столбцов цикла отведены для служебных сигналов. Ряды с 1-гo по 3-й занимает заголовок регенерационной секции RSOH, ряды с 5-го по 9-й - заголовок мультиплексной секции MSOH, 4-й ряд несет указатели административных блоков. Остальные 261=270-9 столбцов цикла предназначены для информационной нагрузки.
В качестве информационной нагрузки для STM-1 может выступать, например, виртуальный контейнер VC-4. Ему соответствует таблица 9 ´ 261 (см. Рис. 6.39). Первый столбец цикла VC-4 занимает трактовый заголовок РОН, остальные - контейнер С-4, в котором размешается сигнал ПЦИ 140 Мбит/с. Пример использования указателей приведен на Рис. 6.40.
Рис. 6.39. Формат цикла VC-4
Рис. 6.40. Использование указателей. Цикл потока 140 Мбит/с размещается в двух смежных STM-1
Система синхронизации сетей СЦИ строится по иерархическому принципу. Верхний уровень иерархии занимает первичный эталонный задающий генератор (ЗГ), который вырабатывает хронирующий сигнал с долговременным отклонением частоты не более, чем 1´10-11. От него производится принудительная синхронизация всех остальных (ведомых) ЗГ. Синхронизация производится передачей хронирующего сигнала от одного ЗГ к следующему. Таким образом образуется иерархия ЗГ, в которых одни их них являются ведомыми по отношению к ЗГ более высоких порядков и, в свою очередь, играют роль головных (ведущих) ЗГ для ЗГ более низкого порядка. Нижний уровень иерархии образуют ЗГ оборудования СЦИ.
Хронирующие сигналы передаются по так называемым синхротрассам, в качестве которых используются линейные тракты STM-N. На участках с системами ПЦИ синхронизируются сигналы 2 Мбит/с, которые также используются в качестве синхротрасс.
Для обеспечения высоконадежной работы системы синхронизации принимается целый ряд специальных мер. Первичный ЗГ обязательно резервируется. Как правило, резервируется и ЗГ, встроенные в оборудование СЦИ. Для передачи хронирующих сигналов используется несколько географически разнесенных синхротрасс. В качестве резервных могут использоваться радиолинии.
Оборудование СЦИ имеет возможность принимать хронирующие сигналы от нескольких источников, для которых задается приоритет использования. Имеется также несколько выходов синхронизации для других сетевых элементов.
В случае потери хронирующих сигналов от ведущего ЗГ ведомый ЗГ переходит в режим удержания частоты, что соответствует переходу данного участка сети в плезиохронный режим, который может использоваться в сети СЦИ в качестве аварийного. При этом качество работы может снижаться.
В настоящее время различная аппаратура СЦИ выпускается целым рядом ведущих фирм: Lucent (бывшая AT&T), Alcatel, Siemens, Philips, Ericsson, GPT, Nokia и др. В данном подразделе содержатся ее общие характеристики и принципы использования для построения сетей связи.
Важной особенностью аппаратуры СЦИ, отличающей ее от аппаратуры предшествующих поколений, является отсутствие жесткого разделения на аппаратуру линейного тракта, преобразовательную, аппаратуру оперативного переключения, контроля и управления. Все эти средства интегрированы. Аппаратура СЦИ является программно управляемой, что обеспечивает гибкость, упрощает эксплуатацию и развитие сетей.
Для обеспечения высокой надежности в аппаратуре СЦИ используются различные виды резервирования. Как правило, блоки питания и другие важнейшие узлы дублируются. Для менее важных блоков возможна установка одного резервного блока на несколько однотипных основных. В результате коэффициент простоя аппаратуры СЦИ в расчете на одно соединение имеет порядок 10-5.
Возможности аппаратуры СЦИ позволяют строить надежные и живучие сети, организуя резервирование на сетевом уровне. Более подробно это будет рассмотрено ниже.
Синхронные мультиплексоры заменяют целый набор оборудования ПЦИ. Они не только осуществляют мультиплексирование всех уровней, но и выполняют функции оборудования линейного тракта.
На вход синхронного мультиплексора могут поступать сигналы ПЦИ и СЦИ (электрические или оптические). Существуют мультиплексоры непосредственно воспринимающие каналы 64 кбит/с, 1,5 Мбит/с, 2 Мбит/с, 6 Мбит/с, 34 Мбит/с, 45 Мбит/с, 140 Мбит/с, а также имеющие интерфейсы для подключения локальных сетей (LAN, MAN), ISDN, B-ISDN и для работы в режиме АТМ. Сказанное не означает, что реальные типы аппаратуры содержат все перечисленные интерфейсы. Каждый конкретный мультиплексор имеет только небольшую часть из указанных возможностей.
На агрегатной (линейной) стороне может осуществляться передача на скоростях 155 Мбит/с (STM-1), 622 Мбит/с (STM-4) или 2,5 Гбит/с (STM-16). Наличие двух агрегатных оптических портов позволяет строить с помощью мультиплексоров такие конфигурации, как "кольцо", "цепочка", а также осуществлять резервирование потоков. Многие типы мультиплексоров могут иметь для целей резервирования и четыре оптических порта.
Ниже представлены основные конфигурации, которые строятся на основе мультиплексоров.
"Цепочка ввода-вывода" (Рис. 6.41). В этой конфигурации два мультиплексора являются оконечными, а все промежуточные - мультиплексорами ввода-вывода (МВВ). Каждый из МВВ может ввести, вывести или проключить транзитом любой из потоков нагрузки. Например, МВВ 1-го уровня СЦИ может иметь до 63 портов нагрузки для потоков 2 Мбит/с и вводить-выводить от 1 до 63 таких потоков.
Рис. 6.41. Цепочка ввода-вывода
"Точка-точка" (Рис. 6.42). В этом случае мультиплексоры используются как оконечные. Передача может осуществляться по двум кабелям, один из которых является основным, а второй - резервным, что обеспечивает защиту от обрыва кабеля или отказа оборудования.
Рис. 6.42. Точка-точка
Недостатком данных конфигураций является отсутствие резервирования. Для его преодоления служит конфигурация "кольцо" (Рис. 6.43). В этом случае несколько МВВ соединены в кольцо. Подобная конфигурация является одной из основных при построении сетей СЦИ и будет детально рассмотрена ниже.
Рис. 6.43. Кольцо
Также мультиплексор может применяться в роли концентратора и в этом случае принимает несколько частично заполненных синхронных потоков (по оптическим или электрическим интерфейсам) и объединяет их в один агрегатный поток. Возможна конфигурация, совмещающая функции концентратора и МВВ.
Под оперативным переключением понимается установление полупостоянных соединений между различными каналами и трактами. Следует подчеркнуть разницу между оперативным переключением и коммутацией. При коммутации устанавливаются временные соединения на вторичной сети, причем осуществляется это под управлением абонентов сети. Полупостоянные соединения при оперативных переключениях устанавливаются на первичной сети по командам сетевого оператора с использованием средств сетевого управления.
На сети СЦИ выполнение функций по оперативному переключению может производиться с помощью встроенных устройств, имеющихся во многих видах аппаратуры. Именно с помощью подобных устройств осуществляются, например, различные переключения потоков в МВВ. Таким образом, функции оперативного переключения могут быть распределены по сети между многими сетевыми элементами.
Тем не менее, во многих случаях удобно иметь специальную автономную аппаратуру оперативного переключения (АОП) СЦИ. Такая аппаратура имеет гораздо больше портов, чем мультиплексоры (до нескольких сотен портов STM-1 или нескольких тысяч портов 2 Мбит/с). С помощью АОП могут создаваться сети, имеющие ячеистую (решетчатую) структуру. Выделяют несколько типов АОП, различающиеся тем, на каких уровнях виртуальных контейнеров осуществляется ввод и переключение потоков.
АОП типа 4/4 может обрабатывать сигналы всех уровней СЦИ, т.е. STM-1, STM-4 и STM-16 (155, 622 Мбит/с и 2,5 Гбит/с соответственно), а также плезиохронные сигналы 140 Мбит/с. Переключение производится на уровне VC-4.
АОП типа 4/1 имеет порты для синхронных сигналов STM-1 (иногда и STM-4) и плезиохронных сигналов 140 и 2 Мбит/с. Переключение производится на уровнях VC-4 и VС-1.
АОП типа 4/3/1 имеет кроме того порты для плезиохронных сигналов 34 Мбит/с, а переключение может производится на уровнях VC-4, VC-3 и VC-1.
Согласно современным взглядам, принятым в большинстве развитых стран, реконструирующих свои сети связи на базе СЦИ, перспективная сеть должна иметь иерархическую трехуровневую архитектуру (Рис. 6.44). Такая архитектура позволяет наиболее рационально построить гибкую, надежную и экономичную сеть.
Рис. 6.44. Трехуровневая архитектура сети СЦИ
Верхний (базовый, магистральный) уровень образуется главными узлами, в которых устанавливается АОП 4/4. Основными единицами, которыми обмениваются эти узлы, служат виртуальные контейнеры VC-4. Каждая линия несет по несколько STM-4 или STM-16. Структура сети на этом уровне решетчатая.
Средний уровень состоит из нескольких соединительных (региональных) сетей, каждая из которых охватывает определенную территорию. Узлы этих сетей обмениваются не только VC-4, но и более мелкими единицами, например, VC-12. Поэтому в узлах используется АОП 4/1, а также МВВ. Важнейшие узлы этого уровня выходят на один или несколько узлов верхнего слоя. Структура соединительных сетей может быть и кольцевой, и решетчатой. В линиях организуются тракты STM-4.
Нижний уровень составляют сети доступа, куда и включаются основные источники и потребители нагрузки. Каждая из сетей доступа выходит на один или несколько узлов среднего уровня. Структура сетей кольцевая на основе МВВ, тракты STM-1 или STM-4.
В самых общих чертах можно охарактеризовать функции каждого уровня следующим образом: верхний уровень создает сеть трактов VC-4, средний - осуществляет перераспределение трактов VC-12 и VC-3 между VC-4, нижний - обеспечивает доступ к сети пользователей.
Преимуществами подобной иерархической архитектуры являются:
Разумеется, описанная модель дает только общую схему, от которой возможны различные отступления. В каждом конкретном случае может быть изменены количество уровней, структуры сетей, функции уровней могут частично перекрываться и т.п. Типовыми структурами при построении сетей СЦИ являются кольцевые на базе МВВ и решетчатые на базе АОП.
Важным аспектом проектирования сетей СЦИ является обеспечение их надежности и живучести. Сама по себе аппаратура СЦИ, как уже указывалось выше, весьма надежна. Кроме того, встроенные средства контроля и управления облегчают и ускоряют обнаружение неисправностей и переключение на резерв.
Однако, преимущества СЦИ в части надежности и живучести не реализуются в полной мере сами по себе. Это объясняется тем, что ВОЛС обладают огромной пропускной способностью, и отказ даже одного участка может привести к разрыву связи для десятков тысяч пользователей и значительным экономическим потерям. Например, когда в начале 1991 года в США был случайно оборван один оптический кабель, обслуживающий Нью-Йорк, то 60% всех вызовов на городской сети оказались блокированы на 8 часов, прекратилась работа товарных бирж, на 5 часов были выведены из строя средства управления воздушным движением в аэропортах Нью-Йорка, Вашингтона и Бостона.
Поэтому необходимо применять специальные меры по обеспечению отказоустойчивости сетей, закладывая резервные емкости и предусматривая алгоритмы реконфигурации сетей при отказах ее элементов. Целый ряд факторов облегчает принятие указанных мер: значительные емкости ВОЛС и снижение стоимости одного каналокилометра в них; наличие средств контроля и управление СЦИ; деление сети СЦИ на независимые функциональные слои; возможности интеллектуальных мультиплексоров и АОП.
Отмеченные обстоятельства привели к концепции построения так называемых самозалечивающихся сетей на основе СЦИ. Ее суть - создание сети, которая при выходе из строя отдельных элементов способна сохранять или автоматически восстанавливать в короткое время нарушенные связи без серьезных последствий для пользователей.
Простейшим способом самозалечивания является резервирование по схеме 1+1 при соединении "точка-точка" (см. Рис. 6.42). В этом случае два пункта соединяются между собой двумя кабелями по географически разнесенным трассам. Каждый сигнал передается одновременно по обеим трассам, а на приемном конце осуществляется автоматический контроль поступающих сигналов и выбор лучшего из них.
Возможности МВВ позволяют организовывать кольцевые самозалечивающиеся сети.
Существуют два варианта их построения: однонаправленное и двунаправленное кольцо.
При первом варианте каждый входной поток направляется вокруг кольца в обоих направлениях, а на приемной стороне, как и в случае схемы 1+1, осуществляется выбор лучшего сигнала. Для построения кольца используются два волокна. Передача по всем основным путям происходит в одном направлении (например, по часовой стрелке), а по всем резервным - в противоположном (деление на основной и резервный пути здесь является условным, так как они оба равноправны). Поэтому такое кольцо называется однонаправленным, с переключением трактов или с закрепленным резервом.
Схема прохождения сигналов обоих направлений передачи для одного соединения по основному и резервному путям в таком кольце изображена на Рис. 6.45.
Рис. 6.45. Однонаправленное кольцо
В случае двунаправленного кольца с двумя волокнами удвоение сигнала не производится. При нормальной работе каждый входной поток направляется вдоль кольца по кратчайшему пути в любом направлении (отсюда и название "двунаправленное"). При возникновении отказа посредством МВВ на обоих концах отказавшего участка осуществляется переключение всего потока информации, поступавшего на этот участок, в обратном направлении. О таком кольце также говорят, что в нем осуществляется переключение секций или защита с совместно используемым резервом.
Пример двунаправленного кольца приведен на Рис. 6.46 и Рис. 6.47. На них показаны схемы прохождения сигналов обоих направлений передачи для одного соединения при нормальном режиме работы (Рис. 6.46) и в аварийном режиме при отказе одного из участков кольца, перечеркнутого крестом (Рис. 6.47).
Рис. 6.46. Двунаправленное кольцо в нормальном режиме
Рис. 6.47. Двунаправленное кольцо в аварийном режиме
Возможно также двунаправленное кольцо с четырьмя волокнами. Оно обеспечивает более высокий уровень отказоустойчивости, чем кольца с двумя волокнами, однако затраты на его построение существенно больше, поэтому такой вариант применяется реже.
Двунаправленное кольцо в большинстве случаях оказывается более экономичным, требуя меньшую пропускную способность. Это объясняется тем, что сигналы, передаваемые на различных непересекающихся участках такого кольца, могут использовать одни и те же емкости (как в основном, так и в аварийном режимах работы). В то же время однонаправленное кольцо проще в реализации. Анализ типичных ситуаций показывает, что каждый из двух видов кольцевой архитектуры имеет свою область предпочтительного применения.
Однонаправленные кольца больше подходят для случаев центростремительного трафика. Это типично для сетей доступа, предназначенных для подключения пользователей к ближайшему узлу. Двунаправленные кольца более выгодны при достаточно равномерном распределении трафика, при котором становится заметным их преимущество в пропускной способности. Поэтому их применение целесообразно для соединительных сетей.
При обоих вариантах возможно сохранение полной работоспособности сети при любом одиночном отказе.
Для сети с произвольной структурой, в узлах которой установлена АОП, в случаях возникновения на сети отказов, разрывающих имеющиеся тракты, возможно переключение потоков с использованием резервов пропускной способности работоспособных линий (реконфигурация).
На Рис. 6.48 показан пример фрагмента сети и схема прохождения трактов на нем при нормальном режиме работы. На Рис. 6.49 - тот же фрагмент после реконфигурации, вызванной отказом линии между узлами А и В.
Рис. 6.48. Сеть на основе АОП в нормальном режиме
Рис. 6.49. Сеть на основе АОП в аварийном режиме
В сетях на основе АОП резервирование может осуществляться с использованием различных маршрутов, число которых тем больше, чем больше связность сети и чем больше резервы по пропускной способности. Поэтому в таких сетях возможна зашита от одновременных отказов нескольких элементов, а не только от одиночных отказов, как в кольцевых сетях.
Самозалечивание на основе АОП имеет несколько вариантов организации. Во-первых, процедура реконфигурации может быть централизованной или децентрализованной (распределенной). В первом случае необходим сетевой центр управления, который собирает информацию о состоянии всех элементов сети, при необходимости принимает решение о реконфигурации и рассылает соответствующие команды на переключение всем АОП. Основное преимущество централизованного метода в том, что он более прост в реализации. Основной недостаток - критичность к отказам центра управления и к потере или искажению информации, поступающей в центр, и команд, идущих от центра к АОП.
Полностью распределенные процедуры не требуют наличия подобного центра. В этом случае при возникновении отказов на сети комплекты АОП различных узлов, обмениваясь между собой сообщениями, определяют состояние сети, вырабатывают согласованное решение по реконфигурации и реализуют принятое решение. Основной недостаток - гораздо большая сложность распределенных процедур, и как следствие - большие временные затраты на их выполнение.
Далее, выбор нового плана распределения потоков может осуществляться или путем обращения к процедурам поиска в ответ на изменение состояния сети в реальном масштабе времени, или на основании заранее рассчитанных и хранящихся в памяти процессоров центра управления или АОП конфигурационных таблиц.
В первом варианте в принципе может быть проанализирована любая ситуация на сети, однако здесь следует учитывать ограничение на время принятия решения. Во втором - возникает трудность, обусловленная тем, что общее число всех возможных состояний сети весьма велико. Поэтому иметь таблицу, охватывающую все множество состояний невозможно, так как ее хранение потребовало бы недостижимого на практике объема памяти, а время поиска в ней было бы недопустимо большим. В связи с этим приходится ограничиваться охватом некоторого подмножества состояний сети, размер которого выбирается с одной стороны, учитывая требования по отказоустойчивости, а с другой - исходя из реальных возможностей по объему памяти и быстродействию. Например, это подмножество может включать только состояния с одним отказавшим элементом, или все состояния с одним отказом и часть состояний с двумя и т.п.
Наконец, существуют комбинированные методы. Например возможен подход, при котором АОП всех узлов хранит конфигурационные таблицы, охватывающие некоторое подмножество возможных состояний сети. При отказах включается распределенная процедура определения состояния сети, после выполнения которой принимается решение о реконфигурации на основании имеющихся таблиц. Состояние всей сети контролируется также единым центром, который при необходимости обновляет конфигурационные таблицы и рассылает их всем узлам. В этом случае выход из строя центра управления не приведет к полной блокировке процедур самозалечивания, а может только снизить их эффективность.
Выше были описаны основные сетевые конфигурации и подходы к организации самозалечивания в них. Они могут применяться не только в чистом виде, но и в различных комбинациях. Как правило, построение реальных достаточно больших сетей будет требовать применения многих, если не всех, из рассмотренных методов. Это видно уже из схемы трехуровневой архитектуры сети (см. Рис. 6.44).
Резервирование по схеме 1+1 (см. Рис. 6.42) может использоваться на отдельных направлениях в сочетании с любой другой архитектурой. Подобное его применение оказывается оправданным, когда трафик на этих направлениях существенно больше, чем на остальных, а количество таких направлений невелико. Схема 1+1 может использоваться также на отдельных участках на первых этапах внедрения на сети СЦИ путем ее наложения на существующую асинхронную сеть до создания замкнутого кольца.
Весьма перспективным представляется построение сетей СЦИ в виде нескольких объединенных колец. Например, сеть может состоять из нескольких колец доступа, связанных посредством главного кольца. В связи с этим заслуживают внимания проблемы сопряжения и взаимодействия колец между собой. Возможны различные варианты их организации, использующие в узлах межкольцевой связи МВВ и АОП.
Рис. 6.50. Объединение колец посредством МВВ
Схема объединения колец посредством МВВ представлена на Рис. 6.50. При этом несколько МВВ образуют своего рода распределенный узел оперативного переключения. Такой вариант возможен, когда число колец невелико и потоки между ними небольшие.
Гораздо большие возможности предоставляет использование АОП (Рис. 6.51). При этом, как видно из рисунка, могут быть организованы и логические кольца, охватывающие различные цепочки МВВ.
Вообще применение смешанной архитектуры, использующей как кольцевые структуры, так и АОП, позволяет эффективно строить сети, обеспечивая тот же уровень отказоустойчивости, что и у чисто кольцевой сети, при меньшей суммарной пропускной способности всех линий.
Рис. 6.51. Объединение колец посредством АОП
Наиболее прост и дешев вариант объединения колец, когда два смежных кольца имеют только один общий узел. Однако он обладает тем недостатком, что при выходе из строя этого узла связь между кольцами прерывается. Поэтому обычно рекомендуется применять для сопряжения колец два узла. Это обеспечивает устойчивость сети по отношению к одиночным отказам элементов.
В некоторых случаях требуется обеспечить возможность бесперебойной работы не только при любых одиночных отказах, но и при любом сочетании двух одновременно неработоспособных элементов в различных кольцах (по одному в каждом). Для этого каждый поток, направляемый в смежное кольцо, должен достигать обоих узлов сопряжения, а эти узлы оснащаются специальными устройствами для выбора и переключения сигналов.
Таким образом, выбор архитектуры сети требует детального анализа, учитывающего, в частности, размеры сети, требования по надежности и живучести, распределение тяготений между узлами и другие факторы.
Первая сеть СЦИ в России, функционирующая с августа 1992 года, была создана в Москве компанией "Макомнет".
Для прокладки оптических кабелей базовой сети "Макомнет" использованы тоннели Московского метрополитена. Общая протяженность проложенных кабелей превышает 400 км. Сеть имеет радиально-кольцевую структуру и состоит в настоящее время из 8 колец, в каждом из которых использовано оборудование СЦИ 1-го уровня (STM-1) фирмы Northern Telecom (Великобритания). Синхронные мультиплексоры типа TN-1X установлены в станционных помещениях метрополитена и используют его источники энергоснабжения. Это мультиплексоры ввода-вывода, обладающие функциями оперативного переключения, образуют линейные тракты со скоростью передачи 155 Мбит/с и обрабатывают до 63 стандартных цифровых потоков по 2 Мбит/с. В настоящее время осуществляется переход на следующий уровень STM-4 (622 Мбит/с).
Аналогично сети "Макомнет" была создана сеть на базе метрополитена и в Санкт-Петербурге. Ее оператором является АО "Метроком". Она функционирует с июля 1994 года. Общая протяженность кабелей - 105 км.
Первой магистральной линией СЦИ в России является линия АО "Раском" между Москвой и Санкт-Петербургом. Ее длина 680 км. При этом оптический кабель подвешен на опорах контактной сети железной дороги. Сооружение этой магистрали заняло всего около четырех месяцев. На линии имеется 15 промежуточных пунктов, в которых установлены те же МВВ TN-1X. Они выполняют цифровую регенерацию линейного сигнала и ввод-вывод потоков по 2 Мбит/с.
Магистраль "Раском" вошла в строй в марте 1994 года и связала между собой сети "Макомнет" и "Метроком". Она может обслуживать пользователей не только в Москве и Санкт-Петербурге, но и в населенных пунктах, расположенных вдоль ее трассы в местах установки МВВ.