Издревле люди использовали для навигации (т. е. точного определения курса на основе сведений о местоположении объекта) днем солнце, а ночью - звезды. Но иногда небо покрывается тучами, и тогда определить свое местоположение почти невозможно. Сегодня, когда в небе "зажглись" искусственные "звезды" систем спутниковой навигации, путнику уже не грозит опасность сбиться с пути.

      Первые системы спутниковой навигации создавались исключительно для военных нужд, однако в настоящее время они широко применяются в гражданских целях. С их помощью осуществляется контроль за транспортными и грузовыми перевозками (автомобильными, железнодорожными, морскими), отслеживается местонахождение потерянных или угнанных транспортных средств, ведется поиск людей в чрезвычайных ситуациях, проводятся исследования миграции животных.

      Существуют два основных способа определения местоположения. Первый предполагает наличие у абонента стандартной навигационной аппаратуры, которая позволяет с заданной точностью определять координаты. Второй метод основан на определении координат по доплеровскому сдвигу частоты и не требует использования специальной навигационной аппаратуры.

Системы GPS и "Глонасс"

       Глобальная навигационная система GPS (Global Positioning System), известная также как Navstar (Navigaion System with Time and Ranging - Навигационная система определения времени и дальности), предназначена для передачи навигационных сигналов, которые могут одновременно приниматься во всех регионах мира. Система была разработана по заказу Министерства обороны США, а космические аппараты (КА) изготовила компания Rockwell International.

      Российская спутниковая навигационная система (СНС) аналогичного назначения, известная под названием "Глонасс" (Глобальная навигационная спутниковая система) разрабатывалась по заказу Министерства обороны России, но сейчас применяется для предоставления навигационных услуг различным категориям потребителей - без каких-либо ограничений. Орбитальная группировка российской системы навигации была развернута в начале 90-х гг., а ее коммерческая эксплуатация осуществляется с 1995 г.

Архитектура и основные характеристики

       Системы GPS и "Глонасс" имеют сходную архитектуру. В их состав входят космический сегмент, состоящий из 24 КА, сеть наземных станций наблюдения за их работой и пользовательский сегмент (навигационные приемники). Все спутники GPS/"Глонасс" являются автономными. Параметры их орбит периодически контролируются сетью наземных станций слежения, с помощью которых (не реже 1-2 раз в сутки) вычисляются баллистические характеристики, регистрируются отклонения КА от расчетных траекторий движения и определяется собственное время бортовых часов.

       Наземные станции также контролируют исправность навигационной аппаратуры, установленной на борту КА. Для обнаружения отказов аппаратуры требуется, как минимум, несколько часов.

       К основным характеристикам спутниковых навигационных систем (табл. 1) кроме точности и надежности определения координат относятся доступность и целостность. Термин доступность в системах навигации означает возможность доведения до пользователей навигационных сообщений. На практике доступность оценивается как вероятность получения потребителем навигационной информации в заданный временной интервал и с требуемой точностью.
 

Таблица 1. Основные характеристики спутниковых навигационных систем GPS и "Глонасс"
Показатель GPS "Глонасс"
Орбитальная группировка
Число КА  24  24
Число орбитальных плоскостей 6 3
Число КА в каждой плоскости 4 8
Высота орбиты, км 20 000 19 100 
Наклонение орбиты,  55 64,8
Период обращения КА, ч 12 11,26
Спутники
Масса КА стартовая/орбитальная, кг 1650/835 Н/д
Мощность солнечных батарей, Вт 700  Н/д
Срок эксплуатации, лет 7,5  2-3
Навигационные ретрансляторы
Рабочие частоты, МГц  L1=1575,42; L2=12275,6  1602,56-1615,5 
ЭИИМ, дБВт Н/д  24-27
Мощность передатчика, Вт 50 (L1); 8 (L2) Н/д
Поляризация Правосторонняя Правосторонняя
Точность навигационных определений 
Погрешность определения местоположения, м 100 (C/A-код); 16 (P-код) 100 (СКО)
Погрешность определения скорости движения, м/c 10 (C/A-код); 0,1 (P код) 0,9
Погрешность определения времени  340 нс (C/A-код); 90 нc (P-код) 1 мс
Надежность навигационных определений, % 95 Н/д
Примечания: Н/д - нет данных; ЭИИМ - эквивалентная изотропно излучаемая мощность.

 
       Целостность характеризует способность системы обнаруживать свое неправильное функционирование и исключать возможность использования ее данных пользователями при недопустимых отклонениях рабочих характеристик. Фактически, когда речь идет о целостности системы, основной информацией являются данные о состоянии спутников и их неисправностях. Показатель целостности системы - это вероятность оповещения потребителей при нарушении ее работы системы в пределах допустимого временного периода.

      ИСЗ оборудуются двухдиапазонными излучателями, работающими в полосе L1 (1575,42 МГц -19 м) и полосе L2 (1227,60 МГц - 24 м), причем в первой полосе сигнал кодируется кодом общего доступа С/А, обеспечивающим режим захвата и грубого измерения, а также кодом Р, предназначенным для точных измерений и защищенным от несанкционированного доступа. Вторая полоса кодируется только кодом Р . Специальный математический алгоритм кодирования полезного сигнала с высокой вероятностью обеспечивает опознавание его случайным абонентом в качестве "белого шума". Отмечается, что принятая в этой СНС система кодирования сигналов обеспечивает существенное расширение числа физических принципов определения местоположения (в более ранней системе Transit, фактически, использовался только доплеровский эффект и невозможно было, в частности, прямое измерение псевдодальности).

Структура навигационных сигналов GPS

      Каждый GPS-спутник излучает на двух частотах (L1 и L2) специальный навигационный сигнал в виде фазоманипулированной псевдослучайной последовательности. В сигнале зашифровываются два вида кода. Один из них - код С/А (coarse/acquisition, или clear/acquisition) - доступен широкому кругу гражданских потребителей. Он позволяет получать лишь приблизительную оценку местоположения, поэтому называется "грубым" кодом. Передача кода С/А осуществляется на частоте L1 с использованием фазовой манипуляции псевдослучайной последовательности длиной 1023 символа. Защита от ошибок обеспечивается с помощью кода Гоулда. Период повторения С/А-кода - 1 мс. Тактовая частота - 1,023 МГц.

       Другой код - P (precision code), обеспечивает более точное вычисление координат, но пользоваться им способны не все; доступ к нему ограничивается провайдером услуг GPS. В основном P-код предоставляется военным и федеральным службам США. Этот код передается на частоте L2 с применением сверхдлинной псевдослучайной последовательности с периодом повторения 267 дней. Тактовая частота - 10,23 МГц. Кроме этих кодов в сигнале GPS может присутствовать так называемый Y-код, являющийся шифрованной версией P-кода.

      Кроме кодов С/А и P навигационный спутник регулярно передает специальное сообщение, которое содержит дополнительные сведения. Пользователь информируется о состоянии спутника и его параметрах - системном времени, эфемеридах (наборах параметров, точно описывающих орбиту движения навигационного спутника), прогнозе ионосферной задержки, показателях работоспособности. Передача навигационного сообщения длиной 1500 бит осуществляется со скоростью 50 бит/с на частотах L1 и/или L2.

Использование стандартных навигационных приемников GPS/"Глонасс"

        Координаты подвижного абонента определяются с помощью стандартного навигационного GPS- или GPS/"Глонасс"-приемника  ( рисунок 1 ), встроенного в терминал пользователя. Устройство, как правило, использует собственную миниатюрную антенну и автономно вычисляет географические координаты и всемирное время (UTC) по навигационным сигналам. В отдельных случаях навигационная антенна совмещается со связной антенной абонентского терминала (например, в системе Inmarsat-C), а прием навигационных данных может осуществляться как в обслуживаемом, так и в необслуживаемом режимах его работы.



   (Полный формат)

Рисунок 1. Схема определения координат объекта в системах спутниковой связи с использованием GPS/"Глоннас"-приемников

      GPS/"Глонасс"-приемники чаще всего применяются, если необходимо получить высокую точность координат (погрешность не более 100 м). Захватив сигнал, навигационный приемник автоматически вычисляет координаты объекта, скорость сигнала и всемирное время и формирует отчет. Сведения о местонахождении объекта передаются по спутниковым каналам связи в диспетчерский пункт.

     Навигационные устройства могут различаться по количеству каналов приема, скорости обновления данных, времени вычислений, точности и надежности определения координат. Современные GPS-устройства обычно оснащены 6-8 приемниками, что позволяет отслеживать практически все навигационные спутники, находящиеся в зоне радиовидимости объекта. Если каналов меньше, чем "наблюдаемых" спутников, автоматически выбирается наиболее оптимальное сочетание КА. Скорость обновления навигационных данных - 1 с. Время обнаружения зависит от числа одновременно наблюдаемых спутников и режима определения местоположения.

       Определение навигационных параметров может производиться в двух режимах - 2D (двумерном) и 3D (пространственном). В режиме 2D устанавливается широта и долгота (высота считается известной); для этого достаточно присутствия в зоне радиовидимости трех спутников. Время определения координат в режиме 2D обычно не превышает 2 мин. Для определения пространственных координат абонента (режим 3D) требуется, чтобы в соответствующей зоне находились не менее четырех КА. Гарантируются время обнаружения не более 3-4 мин и погрешность вычисления координат не более 100 м. Комбинированные GPS/"Глонасс"-приемники с обобщенным алгоритмом определения местоположения даже при использовании стандартного С/А-кода обеспечивают более высокую точность (15-20 м).

      Навигационный приемник сигналов для системы GPS состоит из приемного модуля и малогабаритной антенны с малошумящим усилителем. Приемный модуль выпускается как в виде автономного устройства со встроенными источниками питания, так и в виде отдельной платы, встраиваемой в абонентский терминал. К сожалению, массовый выпуск малогабаритных и относительно дешевых приемников "Глонасс" пока не налажен, поэтому услугой определения местонахождения с помощью этих приемников пользуются преимущественно российские потребители, да и то лишь в системах специального назначения.

      На степень точности вычисления координат влияет ряд факторов, зависящих от процедуры их определения. Эти факторы принято называть факторами снижения точности. Как правило, при вычислении координат применяются следующие стандартные факторы снижения точности:

    Основными источниками ошибок, влияющими на точность навигационных вычислений, являются следующие.

Погрешности, обусловленные режимом селективного доступа (Selective availability, S/A). Реализуя этот режим, провайдер услуг GPS (Министерство обороны США) намеренно снижает точность определения местонахождения для гражданских потребителей. В режиме S/A формируются ошибки искусственного происхождения, вносимые в сигнал на борту GPS-спутников с целью загрубления навигационных измерений. Такими ошибками являются неверные данные об орбите спутника и искажения показаний его часов за счет внесения добавочного псевдослучайного сигнала. Величина среднеквадратической ошибки из-за влияния этого фактора составляет примерно 30 м.

Погрешности, связанные с распространением радиоволн в ионосфере. Задержки распространения сигналов при их прохождении через верхние слои атмосферы приводят к ошибкам порядка 20-30 м днем и 3-6 м ночью. Несмотря на то, что навигационное сообщение, передаваемое с борта GPS-спутника, содержит параметры модели ионосферы, компенсация фактической задержки в лучшем случае составляет 50%. Компенсировать ошибки, вызванные ионосферной рефракцией, можно при использовании для навигации сигналов, принимаемых на двух разных частотах.

Погрешности, обусловленные распространением радиоволн в тропосфере. Возникают при прохождении радиоволн через нижние слои атмосферы. Значения погрешностей этого вида при использовании сигналов с С/А-кодом не превышают 30 м.

Эфемеридная погрешность. Ошибки обусловлены расхождением между фактическим положением GPS-спутника и его расчетным положением, которое устанавливается по данным навигационного сигнала, передаваемого с борта КА. Значение погрешности обычно не больше 3 м.

Погрешность ухода шкалы времени спутника обусловлена расхождением шкал времени различных спутников. Устраняется с помощью наземных станций слежения или за счет компенсации ухода шкалы времени в дифференциальном режиме определения местоположения.

Погрешность определения расстояния до спутника. Данный показатель является статистическим, он вычисляется для конкретного спутника и заданного интервала времени. Ошибка не коррелирована с другими видами погрешностей. Ее величина обычно не превышает 10 м.

Методы повышения точности навигационных определений

Метод дифференциальных поправок

       Один из основных методов повышения точности определения местонахождения объекта и устранения ошибок, связанных с введением режима селективного доступа, основан на применении известного в радионавигации принципа дифференциальных навигационных измерений.

      Дифференциальный режим DGPS (Differential GPS) позволяет установить координаты с точностью до 5 м в динамической навигационной обстановке и до 2 м - в стационарных условиях. Дифференциальный режим реализуется с помощью контрольного GPS-приемника, называемого опорной станцией. Она располагается в пункте с известными координатами, в том же районе, что и основной GPS-приемник, и дает возможность одновременно отслеживать GPS-спутники.

   Опорная станция включает в себя измерительный датчик GPS с антенной, процессор, приемник и передатчик данных с антенной. Станция, как правило, использует многоканальный приемник GPS, каждый канал которого отслеживает один видимый спутник. Необходимость непрерывного отслеживания каждого КА обусловлена тем, что опорная станция должна "захватывать" навигационные сообщения раньше, чем приемники потребителей. Сравнивая известные координаты (полученные в результате прецизионной геодезической съемки) с измеренными, контрольный GPS-приемник вырабатывает поправки, которые передаются потребителям по радиоканалу в заранее оговоренном формате.

    Аппаратура потребителя включает в себя GPS-приемник с антенной, оснащенный процессором и дополнительным радиоприемником с антенной, который и позволяет получать дифференциальные поправки с опорной станции. Поправки, принятые от опорной станции, автоматически вносятся в результаты собственных измерений пользовательских устройств.

    Для каждого КА, сигналы которого поступают на GPS-приемник, поправка, полученная от опорной станции, складывается с результатом измерения псевдодальности. Вычисленная поправка сум определяется в виде сум = 1 + 2 х (t-t ), где 1 - поправка псевдодальности, передаваемая в сообщении; 2 - поправка псевдоскорости (скорости изменения поправки), передаваемая в сообщении; t - время измерения приемником потребителя; t - временная привязка поправки.

    Результаты, полученные с помощью дифференциального метода, в значительной степени зависят от расстояния между объектом и опорной станцией. Применение этого метода наиболее эффективно, когда преобладающими являются систематические ошибки, обусловленные внешними (по отношению к приемнику) причинами, что обычно характерно для системы GPS.

     Погрешности S/А и "уходы" шкалы времени компенсируются в дифференциальном режиме полностью. Погрешности вследствие задержки сигналов в атмосфере зависят от идентичности условий прохождения сигналов к опорной станции и объекту, а следовательно, от расстояния между ними. Эти погрешности компенсируются полностью лишь при близком расположении опорной станции и объекта. Эфемеридная погрешность также лучше всего компенсируется при небольшом удалении потребителя от опорной станции. По данным причинам опорную станцию рекомендуется располагать не далее 500 км от объекта.

Методы контроля за целостностью

      Основными достоинствами навигационных систем GPS и "Глонасс" являются глобальность обслуживания, высокая точность и непрерывность определения координат и скорости движения объекта. Кроме того, обе системы обладают возможностями повышения точности и надежности навигационных измерений в результате применения дифференциального режима.

      Действуя в штатном и дифференциальном режимах, эти навигационные системы полностью удовлетворяют требованиям точности при определении местоположения гражданских потребителей. Однако в глобальной рабочей зоне существующие системы GPS и "Глонасс", использующие КА на негеостационарных круговых орбитах, не вполне отвечают требованиям отдельных категорий пользователей. В первую очередь, это касается авиации, где необходимы информация о целостности систем GPS и "Глонасс" и высокая точность навигационных данных о доступности объекта.

      Системы с геостационарными КА способны мгновенно оценивать текущее состояние орбитальных группировок GPS/"Глонасс" и своевременно оповещать об этом потребителей. Кроме того, пользовательская аппаратура может быть оснащена устройством для получения дополнительного навигационного сигнала, повышающего точность навигационных параметров.

     В настоящее время ведутся работы по улучшению показателей доступности и целостности систем GPS/"Глонасс", особенно в части повышения достоверности контроля за их работоспособностью и сокращения времени оповещения объекта о целостности системы.

     Возможны два варианта контроля за целостностью системы, основанные на внутренних и внешних методах контроля.

     Внутренние методы предполагают использование избыточной информации навигационных датчиков потребителя, которую они получают, принимая навигационные сигналы от большего, чем минимально необходимо, числа спутников. С помощью специальных алгоритмов легко обнаружить и/или идентифицировать источник неправильной информации. При обнаружении источника производится полная отбраковка полученных решений навигационных задач; если же спутник, передающий неверные данные, точно идентифицирован, то из расчетов исключаются только те параметры, которые были определены по сигналам этого КА.

      Внешние методы основаны на создании сети станций для обеспечения контроля за работоспособностью навигационных спутников в режиме реального времени. В этом случае узел сети - региональный вычислительный центр - осуществляет обработку данных, получаемых от наземных станций слежения, и формирует сообщение о целостности системы.

      Процедура внешнего контроля является более сложной, поскольку требует создания наземной сети. Однако такое решение задачи целостности позволяет получить более полную информацию о системе, которой принципиально не может располагать отдельный потребитель при автономном контроле за целостностью. В частности, внешние методы контроля позволяют точно определять координаты КА в орбитальных группировках систем GPS и "Глонасс", а также точные поправки для синхронизации временных шкал геостационарных КА и спутников GPS/"Глонасс".
 


Предыдущая страница             Содержание          Следующая страница


Hosted by uCoz