Эта спецификация определяет функции, которые должен выполнять каждый узел в сети FDDI. SMT контролирует и управляет всеми процессами канального и физического уровней, протекающими в отдельной станции. Кроме того, процесс SMT каждой станции взаимодействует с аналогичными процессами других станций для того, чтобы следить и координировать все операции в кольце FDDI. В этом случае SMT принимает участие в распределенном одноранговом управлении кольцом.
SMT включает три группы функций (рисунок 26):
Функции управления соединениями CMT уже были рассмотрены в разделах 2.5.2 и 2.5.3 в связи с тем, что их основным назначением является контроль и управление физическими соединениями, организуемыми физическим уровнем.
Функции управления кольцом RMT заключаются в управлении локальными узлами МАС и кольцами, к которым они присоединены. Функции RMT ответственны за обнаружение дублированных адресов, а также за запуск процедуры инициации кольца Claim Token и процедур обработки аварийных ситуаций Beacon и Trace.
Функции управления, основанного на кадрах FBM позволяют узлу получать от других узлов сети информацию о их состоянии и статистике о прошедшем через них трафике. Эта информация хранится в базе данных управляющей информации MIB (Management Information Base).
Уведомление о статусе и наличии локального МАС-узла. RMT несет ответственность за уведомление других узлов SMT о:
Если же узел получает кадр Beacon от другой станции, то она прекращает передавать свои кадры Beacon и переходит в режим повторения кадров.
Через некоторое время после возникновения аварийной ситуации в кольце все станции прекращает генерировать кадры Beacon, кроме одной, той, которая находится в кольце непосредственно за станцией или участком кабеля, являющимися причиной аварийной ситуации в кольце. Станция, продолжающая генерировать кадры Beacon, попадает в состояние Stuck Beacon - "постоянной сигнализации" (рисунок 27).
Процесс RMT каждой станции при входе станции в процесс Beacon запускает таймер TRM (Ring Management), который измеряет период времени, в течение которого данная станция генерирует кадры Beacon. При превышении им границы T_Stuck процесс RMT считает, что станция попала в состояние постоянной сигнализации Stuck Beacon и что узел управления конфигурацией не смог справиться с возникшей в кольце проблемой.
В этой ситуации узел RMT посылает по кольцу так называемый направленный сигнальный кадр - Directed Beacon - станции управления кольца (подразумевается, что на одной из станций кольца выполняется специальное программное обеспечение управления сетью, например, Sun NetManager, не входящее в компетенцию стандарта FDDI). В качестве адреса назначения в кадре Directed Beacon указывается специальный групповой адрес, который станция управления должна распознать. Поле информации должно содержать адрес предшествующей станции - потенциального виновника проблемы.
После передачи нескольких кадров Directed Beacon (для надежности) процесс RMT инициирует процесс Trace.
Процесс Trace используется для обнаружения домена неисправности - то есть группы станций, которые работают некорректно.
Станция, которая инициирует процесс Trace, посылает об этом сигнал станции, непосредственно предшествующей ей в кольце - то есть предыдущему соседу. Сигнал Trace передается в форме последовательности символов Halt и Quiet.
Станция, которая получила сигнал Trace, и станция, которая передала сигнал Trace, на некоторое время отключаются от кольца и выполняют тест проверки внутреннего пути, так называемый Path Test. Детали теста Path Test не определены спецификацией SMT. Ее общее назначение состоит в том, что станция должна автономно проверить передачу символов и кадров между всеми своими внутренними узлами, чтобы убедиться в том, что не она является причиной отказа кольца.
Если тест внутреннего пути Path Test выполнен успешно, то процесс SMT посылает блокам управления конфигурацией сигнал PC_Start, по которому они начинают восстановление физических соединений портов. Если же Path Test не выполняется, то станция остается отсоединенной от кольца.
Спецификация SMT определяет состав объектов SMT MIB и их структуризацию. База SMT MIB состоит из 6 поддеревьев (рисунок 28). Поддерево 5 зарезервировано на будущее.
Сообщество Internet разработало стандарт на базу управляющей информации MIB для сетей FDDI. Стандарт RFC 1285 определяет объекты, которые нужны для управления станциями FDDI по протоколу SNMP. База Internet FDDI MIB является поддеревом ветви Transmission базы MIB-II.
Объекты, определенные в RFC 1285, идентичны объектам SMT MIB. Однако,
имена объектов и их синтаксис отличаются от спецификации SMT MIB. Эти отличия
должны учитываться производителями оборудования и программного обеспечения
управления. Обычно совместимость этих двух спецификаций достигается за
счет встроенных в оборудование агентов-посредников FDDI/SNMP, а также за
счет функций трансляции спецификаций в системах управления сетями.
Синхронный режим устроен следующим образом. В процессе инициализации сети определяется ожидаемое время обхода кольца маркером - TTRT (Target Token Rotation Time). Каждой станции, захватившей маркер, отводится гарантированное время для передачи ее данных в кольцо. По истечение этого времени станция должна закончить передачу и послать маркер в кольцо.
Каждая станция в момент посылки нового маркера включает таймер, измеряющий временной интервал до момента возвращения к ней маркера - TRT (Token Rotation Timer). Если маркер возвратится к станции раньше ожидаемого времени обхода TTRT, то станция может продлить время передачи своих данных в кольцо и после окончания синхронной передачи. На этом основана асинхронная передача. Дополнительный временной интервал для передачи станцией будет равен разности между ожидаемым и реальным временем обхода кольца маркером.
Из описанного выше алгоритма видно, что если одна или несколько станций не имеют достаточного объема данных, чтобы полностью использовать временной интервал для синхронной передачи, то неиспользованная ими полоса пропускания сразу становится доступной для асинхронной передачи другими станциями.
Распределение асинхронной полосы пропускания производится с использованием
восьмиуровневой схемы приоритетов. Каждой станции присваивается определенный
уровень приоритета пользования асинхронной полосой пропускания.
FDDI также разрешает длительные диалоги, когда станции могут
временно использовать всю асинхронную полосу пропускания. Механизм приоритетов
FDDI может фактически блокировать станции, которые не могут
пользоваться синхронной полосой пропускания и имеют слишком низкий приоритет
пользования асинхронной полосой пропускания.
Средняя мощность оптического сигнала на входе станции должна быть не менее -31 дБм. При такой входной мощности вероятность ошибки на бит при ретрансляции данных станцией не должна превышать 2.5*10-10 . При увеличении мощности входного сигнала на 2 дБм, эта вероятность должна снизиться до 10-12 .
Максимально допустимый уровень потерь сигнала в кабеле стандарт определяет равным 11 дБм.
Подстандарт FDDI SMF-PMD (Single-mode fiber Physical medium-dependent layer) определяет требования к физическому уровню при использовании одномодового волоконно-оптического кабеля. В этом случае в качестве передающего элемента обычно используется лазерный светодиод, а дистанция между станциями может достигать 60 и даже 100 км.
FDDI модули для одномодового кабеля выпускает, например, фирма Cisco Systems для своих маршрутизаторов Cisco 7000 и AGS+. Сегменты одномодового и многомодового кабеля в кольце FDDI могут чередоваться. Для названных маршрутизаторов фирмы Cisco имеется возможность выбора модулей со всеми четырьмя комбинациями портов: многомодовый-многомодовый, многомодовый-одномодовый, одномодовый-многомодовый, одномодовый-одномодовый.
Фирма Cabletron Systems Inc. выпускает повторители Dual Attached - FDR-4000, которые позволяют подключить одномодовый кабель к станции класса А с портами, предназначенными для работы на многомодовом кабеле. Эти повторители дают возможность увеличить расстояние между узлами FDDI кольца до 40 км.
Подстандарт физического уровня CDDI (Copper Distributed Data Interface - распределенный интерфейс данных по медным кабелям) определяет требования к физическому уровню при использовании экранированной (IBM Type 1) и не экранированной (Category 5) витых пар. Эта значительно упрощает процесс инсталляции кабельной системы и удешевляет ее, сетевые адаптеры и оборудование концентраторов. Расстояния между станциями при использовании витых пар не должны превышать 100 км.
Фирма Lannet Data Communications Inc. выпускает FDDI модули для своих
концентраторов, которые позволяют работать или в стандартном режиме, когда
вторичное кольцо используется только в целях отказоустойчивости при обрыве
кабеля, или в расширенном режиме, когда вторичное кольцо тоже используется
для передачи данных. Во втором случае полоса пропускания кабельной системы
расширяется до 200 Мбит/сек.
Символ |
Поток битов |
0 (binary 0000) | 11110 |
1 (binary 0001) | 01001 |
2 (binary 0010) | 10100 |
3 (binary 0011) | 10101 |
4 (binary 0100) | 01010 |
5 (binary 0101) | 01011 |
6 (binary 0110) | 01110 |
7 (binary 0111) | 01111 |
8 (binary 1000) | 10010 |
9 (binary 1001) | 10011 |
A (binary 1010) | 10110 |
B (binary 1011) | 10111 |
C (binary 1100) | 11010 |
D (binary 1101) | 11011 |
E (binary 1110) | 11100 |
F (binary 1111) | 11101 |
Q | 00000 |
H | 00100 |
I | 11111 |
J | 11000 |
K | 10001 |
T | 01101 |
S | 00111 |
R | 11001 |
V или H | 00001 |
V или H | 00010 |
V | 00011 |
V | 00101 |
V | 00110 |
V или H | 01000 |
V | 01100 |
V или H | 10000 |
Аналогично можно подключить и рабочие станции. Однако, поскольку сетевые адаптеры для FDDI весьма дороги, этот способ применяется только в тех случаях, когда высокая скорость обмена по сети является обязательным условием для нормальной работы приложения. Примеры таких приложений: системы мультимедиа, передача видео и звуковой информации.
Для подключения к сети FDDI персональных компьютеров применяются специализированные сетевые адаптеры, которые обычным образом вставляются в один из свободных слотов компьютера. Такие адаптеры производятся фирмами: 3Com, IBM и др. На рынке имеются карты под все распространенные шины - ISA, EISA и Micro Channel; есть адаптеры для подключения станций классов А или В для всех видов кабельной системы - волоконно-оптической, экранированной и неэкранированной витых пар.
Все ведущие производители UNIX машин (DEC, Hewlett-Packard, IBM,
и другие) предусматривают интерфейсы для непосредственного подключения
к сетям FDDI.
Конструктивно мосты и маршрутизаторы изготавливаются в двух вариантах - в законченном виде, не допускающем дальнейшего аппаратного наращивания или переконфигурации (так называемые standalone-устройства), и в виде модульных концентраторов.
Примером standalone-устройств являются: Router BR фирмы Hewlett-Packard и EIFO Client/Server Switching Hub фирмы Network Peripherals.
Модульные концентраторы применяются в сложных больших сетях в качестве центральных сетевых устройств. Концентратор представляет собой корпус с источником питания и с коммуникационной платой. В слоты концентратора вставляются сетевые коммуникационные модули. Модульная конструкция концентраторов позволяет легко собрать любую конфигурацию ЛВС, объединить кабельные системы различных типов и протоколов. Оставшиеся свободными слоты можно использовать для дальнейшего наращивания ЛВС.
Концентраторы производятся многими фирмами: 3Com, Cabletron, Chipcom, Cisco и другими.
Концентратор - это центральный узел ЛВС. Его отказ может привести к остановке всей сети, или, по крайней мере, значительной ее части. Поэтому большинство фирм, производящих концентраторы, принимают специальные меры для повышения их отказоустойчивости. Такими мерами являются резервирование источников питания в режиме разделения нагрузки или горячего резервирования, а также возможность смены или доустановки модулей без отключения питания (hot swap).
Для того чтобы снизить стоимость концентратора, все его модули запитываются от общего источника питания. Силовые элементы источника питания являются наиболее вероятной причиной его отказа. Поэтому резервирование источника питания существенно продлевает срок безотказной работы. При инсталляции каждый из источников питания концентратора может быть подключен к отдельному источнику бесперебойного питания (UPS) на случай неисправностей в системе электроснабжения. Каждый из UPS желательно подключить к отельным силовым электрическим сетям от разных подстанций.
Возможность смены или доустановки модулей (часто включая и источники
питания) без отключения концентратора позволяет провести ремонт или расширение
сети без прекращения сервиса для тех пользователей, сетевые сегменты которых
подключены к другим модулям концентратора.
Оптоволоконная технология: | ~ 700 $ / порт |
UTP: | ~ 450 $ / порт |