Скопировать работу полностью (архив)

1. Что такое компьютерная телефония?

Компьютерная телефония - CTI (Computer Telephony Integration) - это технология, осуществляющая слияние двух независимо существующих миров - телефонного и компьютерного. От такого слияния выигрывают обе эти "классические" технологии. Во-первых, CTI позволяет использовать все преимущества компьютерной идеологии (стандарты, гибкость, совместимость, удобный и привычный интерфейс и т.д.) для управления телефонными соединениями. A во-вторых - это предоставление в качестве терминала к компьютеру обычного телефонного аппарата. Но, пожалуй, главное достоинство CTI - это открытость систем, т.е. вся компьютерная телефония основана на стандартах и, следовательно, системы CTI легко модифицируются, расширяются; достигается максимальная совместимость компонентов. Эти преимущества оказались настолько очевидными, что это обусловило быстрое развитие и широкое применение систем CTI.

2. Определение понятия "IP-телефония"

Вначале дадим относительно строгую формулировку этого понятия. Под IP-телефонией понимается технология, позволяющая использовать Интернет или любую другую IP-сеть в качестве средства организации и ведения международных и междугородных телефонных разговоров и передачи факсов в режиме реального времени. IP-телефония является одним из наиболее сложных и системных приложений компьютерной телефонии.

Теперь постараемся максимально упростить это определение, изложив его более доходчиво: Интернет - это всемирная сеть компьютерных сетей. Используя Интернет, можно обмениваться цифровой информацией (наиболее известный пример - электронная почта). Однако технически возможным представляется оцифровать звук или факсимильное сообщение и переслать его аналогично тому, как пересылаются цифровые данные. И в этом смысле IP-телефония использует Интернет (или любую другую IP-сеть) для пересылки голосовых или факсимильных сообщений между двумя пользователями компьютера в режиме реального времени.

3. Основные принципы работы IP-телефонии

Общий принцип действия телефонных серверов IP-телефонии таков: с одной стороны, сервер связан с телефонными линиями и может соединиться с любым телефоном мира. С другой стороны, сервер связан с Интернетом и может связаться с любым компьютером в мире. Сервер принимает стандартный телефонный сигнал, оцифровывает его (если он исходно не цифровой), значительно сжимает, разбивает на пакеты и отправляет через Интернет по назначению с использованием протокола Интернет (TCP/IP). Для пакетов, приходящих из Сети на телефонный сервер и уходящих в телефонную линию, операция происходит в обратном порядке. Обе составляющие операции (вход сигнала в телефонную сеть и его выход из телефонной сети) происходят практически одновременно, что позволяет обеспечить полнодуплексный разговор. На основе этих базовых операций можно построить много различных конфигураций.

Варианты построения IP-телефонных систем

Известны и практически реализуются две базовые схемы IP-телефонии. Первая из них рис. 1 связана с организацией телефонных переговоров между пользователями персональных компьютеров, оснащенных мультимедийным оборудованием и (или) специальными программными (программно-аппаратными) средствами, обеспечивающим ведение дуплексных телефонных переговоров, необходимый сервис и контроль. Пользовательские компьютеры могут входить в состав локальной сети, иметь персональный IP-адрес или подключаться к сети Интернет при помощи модема.


Рис. 1. Структурная схема организации телефонной связи через сеть Интернет

Вторая схема - рис. 2, предусматривает использование специальных многофункциональных устройств - шлюзов. Шлюз предназначен для преобразования аналоговых речевых и служебных сигналов в цифровую последовательность, организации из этой последовательности пакетов глобальной сети Интернет и передачи их в сеть, прием пакетов и восстановление цифровой последовательности - цифровых речевых и служебных сигналов и их преобразование в аналоговую форму, а так же решение большого перечня задач, связанных с организацией интерфейсов, генерированием и детектированием сигналов абонентской сигнализации, управлением режимами телефонных переговоров и многое другое.

Шлюзы могут устанавливаться на серверах Интернет-провайдеров, городских телефонных станциях, учрежденческих АТС, серверах локальных вычислительных сетей, Web-серверах компаний, нуждающихся в организации голосовых горячих линий, служб технической поддержки, диалоговых справочных служб и т.д. Шлюзы, наконец, могут устанавливаться на маршрутизаторах.

В зависимости от схемы организации связи архитектура шлюза может меняться, могут модифицироваться некоторые функции, выполняемые шлюзом, интерфейсы. Однако главные задачи шлюза - обеспечение качественного дуплексного телефонного общения абонентов в режиме пакетной передачи и коммутации цифровых сигналов сохраняются.

Рис. 2. Структурная схема организации телефонной связи через сеть Интернет с использованием шлюзов

Понятно, что рассмотренные выше базовые схемы могут комбинироваться. Возможны разнообразные способы организации IP-телефонной связи с использованием шлюзов, размещенных в функционально различных точках сети. Однако как свидетельствуют результаты многочисленных обзорных публикаций, рекламные сообщения практически всех фирм, работающих в области IP-телефонии, и здравый смысл применение шлюзов является сегодня магистральным направлением, а собственно шлюз - ключевым элементом.

4. Стандарты

Стандарты являются критическим фактором для мира IP-телефонии. Одна из наиболее важных областей стандартизации - протокол обмена сообщениями в IP-телефонии.

Ранние решения IP-телефонии использовали для связи друг с другом закрытые протоколы. Оба участника беседы должны были иметь аналогичные продукты. Intel и Microsoft возглавили направление на разработку стандартов на основе H.323, рекомендованного International Telecommunications Union (ITU). Этот стандарт формулирует технические требования для передачи аудио- и видеоданных по сетям передачи данных. H.323 (подробное описание H.323 можно найти на http://www.webproforum.com/h323/index.html) включает в себя:

Стандарты на видео кодеки не требуются для обработки телефонных звонков, но существуют внутри той же системы стандартов.

Технические требования к голосовым кодерам включают требования, такие как:

При передаче в режиме реального времени до 30% пакетов могут потеряться или опоздать (что в режиме реального времени одно и то же). Хорошее приложение IP-телефонии должно возместить нехватку пакетов, восстановив потерянные данные. Сам алгоритм кодировки также оказывает влияние на восстановление данных. Сложные алгоритмы увеличивают стоимость необходимого оборудования. Наиболее популярным алгоритмом кодирования является G.723.1.

Еще одна особенность состоит в том, что системы IP-телефонии должны иметь возможность поддерживать разные кодеры и добавлять новые по необходимости. H.323 был первоначально разработан для локальных вычислительных сетей, так что переменная ширина полосы частот и время задержки Интернет уменьшают полезность некоторых элементов H.323. По умолчанию голосовым кодеком в стандарте H.323 является G.711. Однако ширина полосы частот в 64 kbps, требуемая в G.711, неприемлема при использовании в Интернет, т.к. большинство пользователей Интернета имеет канал заведомо меньшей ширины. Но даже в этом случае многое из стандарта является полезным.

Кроме G.711 стандарт H.323 определяет звуковые кодеки G.722, G.723,G.723.1, MPEG1, G.728, и G.729. Кодеры с низкой шириной полосы частот - G.729 в 8 kbps и G.723 в 5.3/6.3 kbps - вполне подходят для использования в Интернет. В частности, G.723 является одним из нескольких "стандартных" кодеров для IP-телефонии, особенно после того, как Intel, Microsoft и Netscape объявили о поддержке этого кодера. Основной недостаток G.723 состоит в том, что он требует весьма больших ресурсов процессора. Intel, например, определяет 100 MHz Pentium-процессор как минимальный для использования в Интернет-телефонии.

4.1 Речевые кодеки для IP-телефонии

Особенности функционирования каналов для передачи речевых данных, и прежде всего сети Интернет, а также возможные варианты построения систем телефонной связи на базе сети Интернет предъявляют ряд специфических требований к речевым кодекам (вокодерам). В силу пакетного принципа передачи и коммутации речевых данных отпадает необходимость кодирования и синхронной передачи одинаковых по длительности фрагментов речи. Наиболее целесообразным и естественным для систем IP-телефонии является применение кодеков с переменной скоростью кодирования речевого сигнала. В основе кодека речи с переменной скоростью лежит классификатор входного сигнала, определяющий степень его информативности и, таким образом, задающий метод кодирования и скорость передачи речевых данных. Наиболее простым классификатором речевого сигнала является Voice Activity Detector (VAD), который выделяет во входном речевом сигнале активную речь и паузы. При этом, фрагменты сигнала, классифицируемые как активная речь, кодируются каким-либо из известных алгоритмов (как правило на базе метода Code Excited Linear Prediction - CELP) с типичной скоростью 4 - 8 Кбит/с. Фрагменты, классифицированные как паузы, кодируются и передаются с очень низкой скоростью (порядка 0.1 - 0.2 Кбит/с), либо не передаются вообще. Передача минимальной информации о паузных фрагментах предпочтительна.

Каковы же перспективы создания вокодеров для IP-телефонии? Что имеется сегодня и ожидается в ближайшее время? Насколько можно судить по литературным данным специальных разработок для Интернет-телефонии, рекомендованных ITU-T (сектор стандартизации в области телекоммуникаций международного союза телекоммуникаций) пока не существует. Среди международных стандартов, рекомендуемых для подобных систем, чаще других упоминается G.723.1, обеспечивающий передачу речи со скоростью 5.3 и 6.3 Кбит/с, а так же G.729 для скорости передачи 8 Кбит/с.

4.2 Шлюз и его архитектура

Исходя из вышеизложенного, реализовывать функции IP-телефонии будет устройство (или устройства) - шлюз, которое с сетевой точки зрения осуществляет преобразование управляющей информации и данных, поступающих из одной сети (например PSTN) в пакеты глобальной сети Интернет и обратно. Причем такое преобразование не должно значительно исказить исходный речевой сигнал, а режим передачи обязан сохранить обмен информацией между абонентами в реальном масштабе времени.

Более полно основные функции выполняемые шлюзом при соединении типа "точка-точка" состоят в следующем.

Большая часть функций шлюза в рамках архитектуры TCP/IP реализуются в процессах прикладного уровня.

Наличие разноплановых с вычислительной точки зрения функций, выполняемых системой, порождает проблему ее программной и аппаратной реализации. Рациональное решение этой проблемы основано на использовании распределенной системы, в которой управленческие задачи и связь с сетью осуществляется с помощью универсального процессора, а решения задач сигнальной обработки и телефонного интерфейса выполняются на цифровом процессоре обработки сигналов.

4.3 Обработка сигнала в шлюзе

Схема обработки сигналов в шлюзе при подключении аналогового 2-х проводного телефонного канала PSTN показана на рис. 6.

Телефонный сигнал с 2-х проводной линии поступает на дифференциальную систему, которая разделяет приемную и передающую часть канала. Далее сигнал передачи вместе с "просочившейся" частью сигнала приема подается на аналого-цифровой преобразователь и превращается в цифровой сигнал. В устройстве эхо-компенсации из сигнала передачи удаляются остатки принимаемого сигнала. Для обнаружения и определения сигналов внутриполосной телефонной сигнализации (MF сигналов), сигналов DTMF либо импульсного наборов используются детекторы соответствующих типов. В режиме сессии дальнейшая обработка входного сигнала происходит в речевом кодере. В анализаторе кодера сигнал сегментируется на отдельные фрагменты длительностью 30 мс и каждому входному блоку, состоящему из 240 отсчетов, сопоставляется информационный кадр длиной 137 бит.

Часть параметров, вычисленная в анализаторе, используется в блоке определения голосовой активности (VAD - voice activity detector), который решает является ли текущий анализируемый фрагмент сигнала речью или паузой. При наличии паузы информационный кадр может не передаваться в службу виртуального канала. Режим передачи паузных кадров следующий. На сеансовый уровень передается лишь каждый пятый кадр такого типа. Кроме того, при отсутствии речи для кодировки используется только 27 бит. На приемной стороне из виртуального канала в логический поступает либо информационный кадр (длиной 137 или 27 бит) либо флаг наличия паузы. На паузных кадрах вместо речевого синтезатора включается генератор комфортного шума, который восстанавливает спектральный состав паузного сигнала. Параметры генератора обновляются при получении паузного информационного кадра. Наличие информационного кадра длиной 137 бит включает речевой декодер, на выходе которого формируется 12-ти разрядный речевой сигнал. Для эхо-компенсатора этот сигнал является сигналом дальнего абонента, фильтрация которого дает составляющую электрического эха в передаваемом сигнале. Анализ схемы сигнальной обработки и опыт разработки позволяют выделить следующие основные проблемы цифровой обработки сигналов в шлюзе.

При использовании двухпроводных абонентских линий актуальной остаётся задача эхокомпенсации, особенность которой состоит в том, что компенсировать необходимо два различных класса сигналов - речи и телефонной сигнализации. Очень важной является задача обнаружения и детектирования телефонной сигнализации. Её сложность состоит в том, что служебные сигналы могут перемешиваться с сигналами речи.

С построением кодеков тесно связана задача синтеза VAD. Основная трудность состоит в правильном детектировании пауз речи на фоне достаточно интенсивного акустического шума (шум офиса, улицы, автомобиля и т.д.)

4.4 Сетевые протоколы

При организации телефонных переговоров по вычислительным сетям необходимо передавать два типа информации: командную и речевую. К командной информации относятся сигналы вызова, разъединения, а также другие служебные сообщения.

Краеугольный камень сети ИНТЕРНЕТ - Internet Protocol (IP). Это протокол сетевого уровня, который обеспечивает маршрутизацию пакетов в сети. Он, однако, не гарантирует надежную доставку пакетов. Таким образом, пакеты могут искажаться, задерживаться, передаваться по различным маршрутам (а значит иметь различное время передачи) и т.д. На основе IP работают протоколы транспортного уровня Transport Control Protocol (TCP) и User Datagram Protocol (UDP).

Основное требование к передаче командной информации - отсутствие ошибок передачи. В результате необходимо использовать достоверный протокол доставки сообщений. Обычно, в качестве такого протокола используется протокол TCP, обеспечивающий гарантированную доставку сообщений. Время доставки сообщений также играет немаловажную роль в этом случае. К сожалению, этот параметр является нестабильным, т. к. при появлении ошибок передачи сообщение передается повторно. Передача повторяется до тех пор пока сообщение не будет доставлено успешно. Таким образом, длительность служебных процедур может бесконтрольно увеличиваться, что недопустимо, например, для этапа установления соединения, а также некоторых процедур связанных с передачей по сети телефонной сигнализации. Открытой проблемой в этой области является создание достоверного механизма передачи, который не только гарантирует безошибочную доставку информации, но также минимизирует время доставки при появлении ошибок передачи.

При передаче речевой информации проблема времени доставки пакетов по сети становится основной. Это вызвано необходимостью поддерживать общение абонентов в реальном масштабе времени, для чего задержки не должны превышать 250 - 300 мс. В таком режиме использование повторных передач недопустимо, и следовательно, для передачи речевых пакетов приходится использовать недостоверные транспортные протоколы, например, UDP. При обнаружении ошибки передачи факт ошибки фиксируется, но повторной передачи для ее устранения не производится. Пакеты, передаваемые по протоколу UDP могут теряться. В одних случаях это может быть связано со сбоями оборудования. В других - с тем, что "время жизни" пакета истекло, и он был уничтожен на одном из маршрутизаторов. При потерях пакетов повторные передачи также не организуются. В процессе передачи возможны перестановки пакетов в потоке, а также искажения речевых пакетов. Последнее, однако, происходит крайне редко.

Перед поступлением речевого потока на декодер он должен быть восстановлен. Для этого используется протокол реального времени. В заголовке данного протокола передаются, в частности, временная метка и номер пакета. Эти параметры позволяют определить не только порядок пакетов в потоке, но и момент декодирования каждого пакета, т. е. позволяют восстановить поток. Наиболее распространенный протокол реального времени - Real Time Protocol (RTP), рекомендованный к использованию в стандарте на построение систем реального времени H.323.

Искажения потока пакетов связаны с загруженностью сети. При отсутствии перегрузок искажения минимальны, а часто отсутствуют. Поток речевых пакетов может значительно загружать сеть, особенно, в случае многоканальных систем. Это происходит из-за высокой интенсивности потока (кадры небольшого размера передаются через малые промежутки времени 20 байт/ 30 мс) и большого объема передаваемой служебной информации. Зная размеры заголовков сетевых протоколов (IP - 20 байт, UDP - 8 байт, RTP - 12 байт), легко вычислить общий объем заголовка речевого пакета - 40 байт. Это в 2 раза превышает размер самого пакета. Передача такого объема служебной информации неприемлема, особенно, при построении многоканальных систем. Таким образом, необходимо искать способы уменьшения количества служебной информации, передаваемой по сети. Существует два возможных варианта решения этой проблемы. Первый предполагает создание специальных транспортных протоколов для IP-телефонии, которые могли бы уменьшить заголовок протокола транспортного уровня. Второй вариант - мультеплексирование каналов в многоканальных системах. В этом случае речевые пакеты от разных каналов передаются под одним сетевым заголовком. Такое решение не только уменьшает количество передаваемой служебной информации, но и снижает интенсивность потока.

5. Вопросы качества IP-телефонии

Телефонная сеть была создана таким образом, чтобы гарантировать высокое качество услуги даже при больших нагрузках. IP-телефония, напротив, не гарантирует качества, причем при больших нагрузках оно значительно падает.

Необходимо отметить, что, как правило, стоимость любой услуги и её качество прямо пропорциональны. Однако понятно и то, что в ряде случаев представляется неразумным сравнительно небольшое увеличение качества оплачивать относительно большим увеличением цены. Вряд ли поздравительные праздничные открытки целесообразно отправлять фельдъегерской связью: хорошо, да дорого.

Конечно, ничей опыт не заменит собственного - лучше попробовать самому оценить качество этого вида связи, проведя разговор посредством IP-телефонии и сравнив его с традиционной телефонной связью. Однако мы рискнем сделать некоторые общие замечания.

Качество связи можно оценить, используя следующие основные характеристики:

Качество связи по первым двум характеристикам значительно увеличилось в сравнении с первыми версиями решений IP-телефонии, которые допускали искажение и прерывание речи. Улучшение кодирования голоса и восстановление потерянных пакетов позволило достичь уровня, когда речь понимается абонентами достаточно легко. Понятно, что задержки влияют на темп беседы. Известно, что для человека задержка до 250 миллисекунд практически незаметна. Существующие на сегодняшний день решения IP-телефонии превышают этот предел, так что разговор похож на связь по обычной телефонной сети через спутник, которую обычно оценивают как связь вполне удовлетворительного качества, требующую лишь некоторого привыкания, после которого задержки для пользователя становятся неощутимы. Отметим, что даже в таком виде связи решения IP-телефонии вполне подходят для многих приложений.

Кроме этого, задержки уменьшаются благодаря следующим трем факторам:

Особенности каналов сети Интернет

Среди каналов, на которых может быть организована IP-телефонная связь, особый интерес представляют каналы Интернет. Несмотря на большое разнообразие, характеризуемое пропускными способностями, числом маршрутизаторов, характеристиками физических линий и пр. реально действующие каналы Интернет характеризуются

Упомянутые обстоятельства и эффекты наглядно могут быть представлены в графической форме. Так, на рис. 3 приведены гистограммы задержек пакетов, показывающие эмпирические распределения вероятностей задержек. На оси абсцисс отложена относительная задержка, характеризующая реальное положение пакета в последовательности на временной оси по отношению к идеальному в предположении, что первый пакет пришел без задержки.

 

 

Рис 3. Гистограмма задержки пакетов

Детальное изучение явлений задержки и потери пакетов позволяет сделать следующие выводы. Задержки пакетов существенно зависят от времени. Кривая этой зависимости имеет большой динамический диапазон и скорость изменения. Заметные изменения времени распространения могут произойти на протяжении одного не продолжительного сеанса связи, а колебания времени передачи могут быть в диапазоне от десятков до сотен миллисекунд и даже превышать секунду.

Зависимость рис. 3 показывает величины возникающих задержек и их вероятности. Данная информация исключительно важна для организации процедуры обработки и выбора параметров обработки. Так, становится ясным, что временная структура речевого пакетного потока меняется. Возникает необходимость организации буфера для превращения пакетной речи, отягощенной нестационарными задержками в канале, возможными перестановками пакетов, в непрерывный естественный речевой сигнал реального времени. Параметры буфера определяются компромиссом между величиной запаздывания телефонного сигнала в режиме дуплексной связи и процентом потерянных пакетов. Потеря пакетов является другим важнейшим негативным явлением в Интернет -телефонии.

На рис. 4 представлены гистограммы потерь пакетов. По оси абсцисс отложено число подряд потерянных пакетов. Анализ гистограммы показывает, что наиболее вероятны потери одного, двух и трех пакетов. Потери больших пачек пакетов редки.

Существенно, что потеря большой группы пакетов приводит к необратимым локальным искажениям речи, тогда как потери одного, двух, трех пакетов можно пытаться компенсировать.


Приложение 1

Схема, реализованная провайдером IP-телефонии компанией Sitek.

 

Приложение 2

Dialogic IP Telephony Products

DM3 IPLink - основанная на стандартах платформа для разработки решений IP-телефонии, объединяющая на одной плате все необходимые функции, имеющие отношение к IP телефонии.

Идеальная платформа для интегрирования функций IP-телефонии в системы Компьютерной Телефонии, такие как Prepaid Calling, системы интеллектуальных сетей и т.п.

DM3 IPLink позволяет:

Основные функции и характеристики DM3 IPLink:


Hosted by uCoz