При использовании короткофокусных рефлекторов, оптимального их облучения удаётся достичь, применяя облучатели в виде рупоров, у которых собственный угол раскрыва очень мал или равен нулю. Рупором, у которого угол раскрыва равен нулю, может служить открытый конец волновода.
В качестве такой антенны удобно использовать осесимметричный параболический рефлектор, оборудовав его круглым волноводом из дюралюминиевых трубок. Для диапазонов 11 и 12 ГГц конвертер (смеситель, гетеродин и даже МШУ) можно выполнить в виде модулей из коротких отрезков стандартных прямоугольных волноводов, широко применяемых в радиолокационных и других СВЧ устройствах трёхсантиметрового диапазона. При этом для подключения такого конвертора к круглому волноводу антенны необходим модульный переходник [4] (рис.14), имеющий плавный переход от круглого волновода к прямоугольному. Передачи спутникового телевидения ведутся как с горизонтальной, так и с вертикальной поляризацией радиоволн. Поэтому приём с той или иной поляризацией обеспечивается поворотом модуля-переходника и всего конвертера на конце круглого волновода, выведенного за заднюю поверхность параболического рефлектора.
В настоящее время нашли широкое распространение конструкции, в которых компактный конвертер расположен непосредственно в фокусе параболического рефлектора. Однако при расположении конвертера, состоящего из нескольких отдельных модулей, за рефлектором удобнее настраивать эти модули и экспериментировать, не затеняя некомпактным модульным конвертером, рукой или частью своего тела рабочей поверхности параболического рефлектора. В такой конструкции потери энергии принятого сигнала на коротком отрезке круглого волновода малы и ими можно пренебречь.
Как в широко распространённых конструкциях, где конвертер расположен в фокусе параболического рефлектора, так и в конструкции с волноводом между облучателем и конвертером, необходимо добиваться максимального согласования облучателя с рефлектором и волноводом, а последнего с входом конвертера, добиваясь наличия, в основном, режима бегущей волны в этой цепи. С этой целью широкое применение в параболических антеннах находят рупорные облучатели, хорошо согласующиеся как с самим параболическим рефлектором, так и с волноводом или входом конвертера. Однако такие облучатели применимы лишь с длиннофокусными рефлекторами и из-за значительного удаления облучателя от рефлектора конструкция антенны оказывается довольно громоздкой.
Гораздо компактней получается антенна с короткофокусным рефлектором, в котором облучатель приближён к поверхности рефлектора, но в этом случае вместо рупорных с узкой диаграммой направленности приходится применять облучатели в виде открытого конца волновода с широкой диаграммой направленности. Однако он хуже, чем рупор, согласуется с параболическим рефлектором, а в цепи волновод-конвертер неизбежно рассогласование и, как следствие этого, появление там отражений и стоячих волн.
Применение облучателя на основе круглого волновода даёт возможность обеспечить сбор с рефлектора энергии радиоволн любой поляризации. Однако из-за неидеального согласования круглого волновода (круглого облучателя) с входом конвертера, построенного на основе отрезков прямоугольного волновода, также неизбежно появление дополнительных отражений и стоячих волн.
Для уменьшения потерь энергии принятого сигнала во входных цепях модульного конвертера приходится применять согласующие устройство в виде модуля-трансформатора сопротивлений [3] (рис.14), представляющего собой отрезок круглого волновода с изменяемой длинной. Изменяя длину этого модуля, можно достичь лучшего согласования на входе конвертера, ориентируясь на наименьшие потери полезного сигнала в этой цепи.
Приведём описание трёх конструкций осесимметричных антенн с параболическим рефлекторами, имеющими различные фокусные расстояния (длиннофокусным, со средним фокусным расстоянием и короткофокусным). Первые две антенны выполнены с облучателями в виде открытого конца круглого волновода, а третья - по схеме Кассегрена с рупорным облучателем.
Точно такие же волновод и облучатель можно применить для рефлекторов большего диаметра с большим фокусным расстоянием, но имеющих тот же угол раскрыва. При этом коэффициент использования поверхности останется прежним, а за счёт увеличения площади рефлектора усиление антенны возрастёт и ширина диаграммы направленности уменьшится. Коэффициент усиления по мощности для антенны с рефлектором большего диаметра можно подсчитать по приведённой выше формуле. Ширину диаграммы направленности (j, в градусах) можно приблизительно оценить, пользуясь соотношением: j = 69l/D .
Если в двухзеркальной антенне, широко использовавшейся в радиолокационных системах на частотах 4 ГГц, применён параболический рефлектор диаметром 1,5 м с глубиной и фокусным расстоянием 0,38 м и углом раскрыва 1800 , то коэффициент усиления антенны на частоте 11 ГГц окажется равным не менее 43 дБВт при ширине диаграммы направленности 1,20 и коэффициент использования поверхности основного рефлектора около 0,6.
Однако существенного выигрыша в усилении у этих антенн не получается, так как их эффективная площадь будет меньше из-за неперпендикулярности попадания на поверхность раскрыва рефлектора лучей приходящего сигнала. К тому же из-за неосесимметричного расположения ухудшается согласование облучателя с рефлектором. Поэтому отражения и стоячие волны между рефлектором и конвертером увеличиваются. Единственным заметным достоинством неосесимметричных антенн с вынесенным облучателем (Ofset Antenne) следует признать почти вертикальное к поверхности Земли расположение рефлектора, что позволяет уменьшить падение на него атмосферных осадков (дождя, снега, града и др.). Это очень важно в северных широтах, где такие осадки выпадают чаще, чем в южных.