Классификация антенных решеток


Направленность действия простейшей антенны - симметричного вибратора - невысокая. Для увеличения направленности действия уже на первых этапах развития антенной техники стали применять систему вибраторов - антенные решетки (АР). В настоящее время антенные решетки наиболее распространенный класс антенн, элементами которых могут быть как слабонаправленные излучатели (металлические и щелевые вибраторы, волноводы, диэлектрические стержни, спирали и т. д.), так и остронаправленные антенны (зеркальные, рупорные и др.).

Применение антенных решеток обусловлено следующими причинами. Решетка из N элементов позволяет увеличить приблизительно в N раз КНД (и соответственно усиление) антенны по сравнению с одиночным излучателем, а также сузить луч для повышения точности определения угловых координат источника излучения в навигации, радиолокации и других радиосистемах. С помощью решетки удается поднять электрическую прочность антенны и увеличить уровень излучаемой (принимаемой) мощности путем размещения в каналах решетки независимых усилителей высокочастотной энергии. Одним из важных преимуществ решеток является возможность быстрого (безынерционного) обзора пространства за счет качания луча антенны электрическими методами (электрического сканирования). Помехозащищенность радиосистемы зависит от ypoня боковых лепестков (УБЛ) антенны и возможности пост стройки (адаптации) его по помеховой обстановке. Антенна решетка является необходимым звеном для создания такого динамическрго пространственно-временного фильтра или пpoсто для уменьшения УБЛ. Одной из важнейших задач современной бортовой радиоэлектроники является создание комплексированной системы, совмещающей несколько функций, например радионавигации, РЛС, связи и т. д. Возникает необходимость создания антенной решетки с электрическим сканированием с несколькими лучами (многолучевой, моноимпульсной и т. д.), работающей на различных частотах (совмещенной) и имеющей различные характеристики.

Имеется ряд конструктивно-технологических преимуществ антенных решеток для бортовых и наземных устройств по сравнению с другими классами антенн. Так, например, улучшение массогабаритных характеристик бортовой аппаратуры происходит за счет использования печатных антенных решеток. Снижение стоимости больших радиоастрономических телескопов достигается благодаря применению зеркальных антенных решеток.

Антенные решетки могут быть классифицированы по следующим основным признакам: геометрии расположения излучателей в пространстве, способу их возбуждения, закономерности размещения излучающих элементов в самой решетке, способу обработки сигнала в решетке, амплитуднофазовому распределению токов (поля) по решетки и типу излучателей. В зависимости от геометрии расположения излучателей АР подразделяются на линейные, дуговые, кольцевые, плоские, выпуклые (цилиндрические, конические, сферические и др.) и пространственные (трехмерные)(см.рисунок) Пространственная решетка в простейшем случае представляет собой систему из двух плоских решеток, параллельно расположенных в пространстве.

Размещение излучателей в самой решетки может быть эквидистантное, у которого шаг (расстояние между излучателями) величина постоянная и неэквидистантное, у которого шаг меняется по определенному закону или случайным образом . В плоской АР излучатели могут быть расположены в узлах прямоугольной или косоугольной координатной системы .

Если косоугольная сетка состоит из равносторонних треугольников, то такая структура образует правильные шестиугольники и называется гексагональной .

По способу возбуждения (питания) излучателей различают решетки с последовательным и параллельным питанием. Возможен также пространственный способ возбуждения, который называют иногда оптическим или "эфирным" .

В больших антенных решетках применяют комбинации последовательно-параллельного питания излучателей, особенно в случае разделения всей антенной решетки на подрешетки (модули) меньших размеров. При последовательном питании элементы решетки возбуждаются падающей волной последовательно друг за другом , а при параллельном - независимо .

Частным случаем параллельного питания является схема типа "елочка", образующаяся за счет каскадного деления подводимой мощности на две части . В случае пространственного возбуждения элементы решетки возбуждаются падающей волной от первичного облучателя.

В питающем антенную решетку тракте (фидере) возможна различная пространственно-временная обработка сигнала. Изменение фазового распределения в решетке с помощью системы фазовращателей в питающем тракте позволяет управлять максимумом диаграммы направленности. Такие решетки называются фазированными антенными решетками (ФАР). Если к каждому излучателю ФАР иди к их группе подключается усилитель мощности, генератор или преобразователь частоты, то такие решетки называются активными фазированными антенными решетками (АФАР) . Приемные АР с саморегулируемым амплитудно-фазовым распределением в зависимости от помеховой обстановки называются адаптивными. Приемные АР с обработкой сигнала методами когерентной оптики называются радиооптическими. Приемные АР, в которых вся обработка ведется цифровыми процессами, называются цифровыми АР.

Совмещенные антенные решетки имеют в своем излучающем раскрыве два (или более) типа излучателей, каждый из которых работает в своем рабочем диапазоне.

Антенные решетки, формирующие с одного излучающего раскрыва несколько независимых (ортогональных) лучей и имеющие соответствующее число выходов, называются многолучевыми.

В зависимости от соотношения амплитуд токов возбуждения различают решетки с равномерным, экспоненциальным и симметрично спадающим амплитудными распределениями относительно центра решетки. Если фазы токов излучателей изменяются вдоль линии их размещения по линейному закону, то такие решетки называют решетками с линейным фазовым распределением. Частным случаем таких решеток являются синфазные решетки, у которых фазы тока всех элементов одинаковы.


Hosted by uCoz